Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6572-6577. doi: 10.1073/pnas.1720770115. Epub 2018 Jun 11.
The origin of biological morphology and form is one of the deepest problems in science, underlying our understanding of development and the functioning of living systems. In 1952, Alan Turing showed that chemical morphogenesis could arise from a linear instability of a spatially uniform state, giving rise to periodic pattern formation in reaction-diffusion systems but only those with a rapidly diffusing inhibitor and a slowly diffusing activator. These conditions are disappointingly hard to achieve in nature, and the role of Turing instabilities in biological pattern formation has been called into question. Recently, the theory was extended to include noisy activator-inhibitor birth and death processes. Surprisingly, this stochastic Turing theory predicts the existence of patterns over a wide range of parameters, in particular with no severe requirement on the ratio of activator-inhibitor diffusion coefficients. To explore whether this mechanism is viable in practice, we have genetically engineered a synthetic bacterial population in which the signaling molecules form a stochastic activator-inhibitor system. The synthetic pattern-forming gene circuit destabilizes an initially homogenous lawn of genetically engineered bacteria, producing disordered patterns with tunable features on a spatial scale much larger than that of a single cell. Spatial correlations of the experimental patterns agree quantitatively with the signature predicted by theory. These results show that Turing-type pattern-forming mechanisms, if driven by stochasticity, can potentially underlie a broad range of biological patterns. These findings provide the groundwork for a unified picture of biological morphogenesis, arising from a combination of stochastic gene expression and dynamical instabilities.
生物形态和形式的起源是科学中最深奥的问题之一,它是我们理解发育和生命系统功能的基础。1952 年,艾伦·图灵(Alan Turing)表明,化学形态发生可以源自线性不稳定性的均匀状态,从而在反应扩散系统中产生周期性的图案形成,但只有那些具有快速扩散抑制剂和缓慢扩散激活剂的系统才会产生这种情况。这些条件在自然界中很难实现,并且图灵不稳定性在生物图案形成中的作用受到了质疑。最近,该理论被扩展到包括噪声激活剂-抑制剂的出生和死亡过程。令人惊讶的是,这种随机图灵理论预测了在广泛的参数范围内存在图案,特别是在激活剂-抑制剂扩散系数的比值方面没有严格的要求。为了探索这种机制在实践中是否可行,我们通过基因工程设计了一个合成细菌群体,其中信号分子形成了一个随机的激活剂-抑制剂系统。合成的图案形成基因电路使最初均匀的遗传工程细菌群落失去稳定性,产生具有可调节特征的无序图案,其空间尺度比单个细胞大得多。实验图案的空间相关性与理论预测的特征定量一致。这些结果表明,如果由随机性驱动,图灵型图案形成机制可能会成为广泛的生物图案的基础。这些发现为基于随机基因表达和动态不稳定性的生物形态发生的统一图景提供了基础。