Suppr超能文献

基于机器学习的考虑 3D 人体扫描仪测量的肥胖分类。

Machine learning-based obesity classification considering 3D body scanner measurements.

机构信息

Department of Industrial and Systems Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.

Department of Physical Education, Korea National Sport University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2023 Feb 26;13(1):3299. doi: 10.1038/s41598-023-30434-0.

Abstract

Obesity can cause various diseases and is a serious health concern. BMI, which is currently the popular measure for judging obesity, does not accurately classify obesity; it reflects the height and weight but ignores the characteristics of an individual's body type. In order to overcome the limitations of classifying obesity using BMI, we considered 3-dimensional (3D) measurements of the human body. The scope of our study was limited to Korean subjects. In order to expand 3D body scan data clinically, 3D body scans, Dual-energy X-ray absorptiometry, and Bioelectrical Impedance Analysis data was collected pairwise for 160 Korean subjects. A machine learning-based obesity classification framework using 3D body scan data was designed, validated through Accuracy, Recall, Precision, and F1 score, and compared with BMI and BIA. In a test dataset of 40 people, BMI had the following values: Accuracy: 0.529, Recall: 0.472, Precision: 0.458, and F1 score: 0.462, while BIA had the following values: Accuracy: 0.752, Recall: 0.742, Precision: 0.751, and F1 score: 0.739. Our proposed model had the following values: Accuracy: 0.800, Recall: 0.767, Precision: 0.842, and F1 score: 0.792. Thus, our accuracy was higher than BMI as well as BIA. Our model can be used for obesity management through 3D body scans.

摘要

肥胖会导致各种疾病,是一个严重的健康隐患。目前,BMI 是衡量肥胖的常用指标,但它并不能准确地对肥胖进行分类;它反映了身高和体重,但忽略了个体身体类型的特征。为了克服使用 BMI 对肥胖进行分类的局限性,我们考虑了人体的三维(3D)测量。我们的研究范围仅限于韩国受试者。为了在临床上扩展 3D 人体扫描数据,我们对 160 名韩国受试者进行了 3D 人体扫描、双能 X 射线吸收法和生物电阻抗分析数据的配对收集。我们设计了一个基于机器学习的使用 3D 人体扫描数据的肥胖分类框架,通过准确性、召回率、精度和 F1 分数进行验证,并与 BMI 和 BIA 进行了比较。在一个 40 人的测试数据集上,BMI 的值分别为:准确性:0.529、召回率:0.472、精度:0.458 和 F1 分数:0.462,而 BIA 的值分别为:准确性:0.752、召回率:0.742、精度:0.751 和 F1 分数:0.739。我们提出的模型的值分别为:准确性:0.800、召回率:0.767、精度:0.842 和 F1 分数:0.792。因此,我们的准确性高于 BMI 和 BIA。我们的模型可以通过 3D 人体扫描用于肥胖管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3209/9968712/3af2c5d13036/41598_2023_30434_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验