Department of Endocrinology and Nutrition, Complejo Asistencial Universitario de León,(CAULE) Gerencia Regional de Salud de Castilla y León, (SACYL)León, Spain.
Department of Endocrinology and Nutrition, Complejo Asistencial Universitario de León,(CAULE) Gerencia Regional de Salud de Castilla y León, (SACYL)León, Spain.
Nutrition. 2022 Jan;93:111442. doi: 10.1016/j.nut.2021.111442. Epub 2021 Jul 30.
Obesity is a challenge for bioelectrical impedance analysis (BIA) estimations of skeletal muscle and fat mass (FM), and none of the equations used for appendicular lean mass (ALM) have been developed for people with obesity. By using different equations and proposing a new equation, this study aimed to assess the estimation of FM and ALM using BIA compared with dual-energy x-ray absorptiometry (DXA) as a reference method in a cohort of people with severe obesity.
This cross-sectional study compared a multifrequency BIA (TANITA MC-780A) versus DXA for body composition assessment in adult patients with severe obesity (body mass index [BMI] of >35 kg/m). Comparisons between measured (DXA) and predicted (BIA) data for FM and ALM were performed using the original proprietary equations of the device and the equations proposed by Kyle, Sergi, and Yamada. Bland-Altman plots were drawn to evaluate the agreement between DXA and BIA, calculating bias and limits of agreement (LOA). Reliability was analyzed using intraclass correlation coefficient (ICC). Stepwise multiple regression analysis was used to derive a new equation to predict ALM in patients with obesity and was validated in a subsample of our cohort.
In this study, 115 patients (72.4% women) with severe obesity (mean BMI of 46.1 [5.2] kg/m) were included (mean age 43.5 [8.6] y). FM was 61.4 (10.1) kg, FM was 57.9 (10.3) kg, and ICC was 0.925 (P < 0.001). Bias was -3.4 (4.4) kg (-5.2%), and LOA was -14.0, +7.3 kg. Using the proprietary equations, ALMDXA was 21.8 (4.7) kg and ALMBIA was 29.0 (6.8) kg with an ICC 0.868, bias +7.3 (4.0) kg (+34.1%) and LOA -0.5, +15.1. When applying other equations for ALM, the ICC for Sergi, et al. was 0.880, the ICC for Kyle, et al. was 0.891, and the best ICC estimation for Yamada, et al. was 0.914 (P < 0.001). Bias was +2.8 (2.8), +4.1 (2.9), and +2.7 (2.8) kg, respectively. The best-fitting regression equation to predict ALM in our population derived from a development cohort (n = 77) was: ALM = 13.861 + (0.259 x H2/Z) - (0.085 x age) - (3.983 x sex [0 = men; 1 = women]). When applied to our validation cohort (n = 38), the ICC was 0.864, and the bias was the lowest compared with the rest of the equations +0.3 (+0.5) kg (+2.7%) LOA -5.4, +6.0 kg.
BIA using multifrequency BIA in people with obesity is reliable enough for the estimation of FM, with good correlation and low bias to DXA. Regarding the estimation of ALM, BIA showed a good correlation with DXA, although it overestimated ALM, especially when proprietary equations were used. The use of equations developed using the same device improved the prediction, and our new equation showed a low bias for ALM.
肥胖是生物电阻抗分析(BIA)估计骨骼肌和脂肪量(FM)的挑战,目前还没有针对肥胖人群的用于估计四肢瘦体重(ALM)的方程。本研究旨在使用不同的方程并提出一个新的方程,通过多频 BIA(TANITA MC-780A)与双能 X 射线吸收法(DXA)比较,评估在肥胖人群中 BIA 对 FM 和 ALM 的估计,DXA 作为参考方法。
本横断面研究比较了多频 BIA(TANITA MC-780A)与 DXA 在严重肥胖(BMI>35 kg/m)成年患者中的身体成分评估。使用设备的原始专有方程和 Kyle、Sergi 和 Yamada 提出的方程,比较了测量值(DXA)和预测值(BIA)的 FM 和 ALM 数据。绘制 Bland-Altman 图以评估 DXA 和 BIA 之间的一致性,计算偏差和允许误差(LOA)。使用组内相关系数(ICC)分析可靠性。采用逐步多元回归分析,推导出一种新的方程,以预测肥胖患者的 ALM,并在我们的队列的亚样本中进行验证。
本研究纳入了 115 名严重肥胖(平均 BMI 46.1 [5.2] kg/m)的患者(72.4%为女性)(平均年龄 43.5 [8.6] 岁)。FM 为 61.4(10.1)kg,FM 为 57.9(10.3)kg,ICC 为 0.925(P<0.001)。偏差为-3.4(4.4)kg(-5.2%),LOA 为-14.0,+7.3 kg。使用专有方程,ALMDXA 为 21.8(4.7)kg,ALMBIA 为 29.0(6.8)kg,ICC 为 0.868,偏差为+7.3(4.0)kg(+34.1%),LOA 为-0.5,+15.1。当应用其他 ALM 方程时,Sergi 等人的 ICC 为 0.880,Kyle 等人的 ICC 为 0.891,Yamada 等人的最佳 ICC 估计值为 0.914(P<0.001)。偏差分别为+2.8(2.8)kg、+4.1(2.9)kg和+2.7(2.8)kg。从发展队列(n=77)中得出的最适合我们人群的预测 ALM 的回归方程为:ALM=13.861+(0.259 x H2/Z)-(0.085 x 年龄)-(3.983 x 性别[0=男性;1=女性])。当应用于我们的验证队列(n=38)时,ICC 为 0.864,与其他方程相比,偏差最低为+0.3(+2.7%)kg,LOA 为-5.4,+6.0 kg。
在肥胖人群中使用多频 BIA 进行 BIA 是可靠的,足以估计 FM,与 DXA 具有良好的相关性和低偏差。关于 ALM 的估计,BIA 与 DXA 具有良好的相关性,尽管它高估了 ALM,尤其是使用专有方程时。使用相同设备开发的方程的使用提高了预测能力,我们的新方程对 ALM 的偏差较低。