Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
Neuropathol Appl Neurobiol. 2023 Apr;49(2):e12894. doi: 10.1111/nan.12894.
Glioneuronal tumours (GNTs) are poorly distinguished by their histology and lack robust diagnostic indicators. Previously, we showed that common GNTs comprise two molecularly distinct groups, correlating poorly with histology. To refine diagnosis, we constructed a methylation-based model for GNT classification, subsequently evaluating standards for molecular stratification by methylation, histology and radiology.
We comprehensively analysed methylation, radiology and histology for 83 GNT samples: a training cohort of 49, previously classified into molecularly defined groups by genomic profiles, plus a validation cohort of 34. We identified histological and radiological correlates to molecular classification and constructed a methylation-based support vector machine (SVM) model for prediction. Subsequently, we contrasted methylation, radiological and histological classifications in validation GNTs.
By methylation clustering, all training and 23/34 validation GNTs segregated into two groups, the remaining 11 clustering alongside control cortex. Histological review identified prominent astrocytic/oligodendrocyte-like components, dysplastic neurons and a specific glioneuronal element as discriminators between groups. However, these were present in only a subset of tumours. Radiological review identified location, margin definition, enhancement and T2 FLAIR-rim sign as discriminators. When validation GNTs were classified by SVM, 22/23 classified correctly, comparing favourably against histology and radiology that resolved 17/22 and 15/21, respectively, where data were available for comparison.
Diagnostic criteria inadequately reflect glioneuronal tumour biology, leaving a proportion unresolvable. In the largest cohort of molecularly defined glioneuronal tumours, we develop molecular, histological and radiological approaches for biologically meaningful classification and demonstrate almost all cases are resolvable, emphasising the importance of an integrated diagnostic approach.
胶质神经元肿瘤(GNTs)在组织学上难以区分,缺乏可靠的诊断指标。我们之前表明,常见的 GNTs 包含两个分子上截然不同的群体,与组织学相关性较差。为了完善诊断,我们构建了一个基于甲基化的 GNT 分类模型,随后评估了基于甲基化、组织学和影像学的分子分层标准。
我们对 83 个 GNT 样本进行了全面的甲基化、影像学和组织学分析:一个包含 49 个样本的训练队列,这些样本之前根据基因组图谱被定义为分子定义的组,以及一个包含 34 个样本的验证队列。我们确定了与分子分类相关的组织学和放射学特征,并构建了一个基于甲基化的支持向量机(SVM)模型进行预测。随后,我们对比了验证队列中甲基化、放射学和组织学分类。
通过甲基化聚类,所有的训练和 34 个验证 GNTs 分为两组,其余 11 个样本与对照皮质聚类在一起。组织学回顾确定了突出的星形胶质细胞/少突胶质细胞样成分、发育不良的神经元和特定的胶质神经元成分作为两组之间的区分标志物。然而,这些标志物仅存在于一部分肿瘤中。放射学回顾确定了位置、边缘定义、增强和 T2 FLAIR 边缘征作为区分标志物。当验证 GNTs 采用 SVM 进行分类时,22/23 分类正确,与组织学和放射学相比具有优势,组织学和放射学分别解决了 17/22 和 15/21 的分类问题,在有数据可比较的情况下。
诊断标准不能充分反映胶质神经元肿瘤的生物学特性,导致一部分肿瘤无法解决。在最大的分子定义胶质神经元肿瘤队列中,我们开发了分子、组织学和放射学方法,用于具有生物学意义的分类,并证明几乎所有病例都可解决,强调了综合诊断方法的重要性。