Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University.
Department of Cardiology, University Medical Center Hamburg-Eppendorf, Germany (A.S., C.M.).
Circ Res. 2021 Jan 22;128(2):172-184. doi: 10.1161/CIRCRESAHA.120.317345. Epub 2020 Nov 10.
Susceptibility to VT/VF (ventricular tachycardia/fibrillation) is difficult to predict in patients with ischemic cardiomyopathy either by clinical tools or by attempting to translate cellular mechanisms to the bedside.
To develop computational phenotypes of patients with ischemic cardiomyopathy, by training then interpreting machine learning of ventricular monophasic action potentials (MAPs) to reveal phenotypes that predict long-term outcomes.
We recorded 5706 ventricular MAPs in 42 patients with coronary artery disease and left ventricular ejection fraction ≤40% during steady-state pacing. Patients were randomly allocated to independent training and testing cohorts in a 70:30 ratio, repeated K=10-fold. Support vector machines and convolutional neural networks were trained to 2 end points: (1) sustained VT/VF or (2) mortality at 3 years. Support vector machines provided superior classification. For patient-level predictions, we computed personalized MAP scores as the proportion of MAP beats predicting each end point. Patient-level predictions in independent test cohorts yielded c-statistics of 0.90 for sustained VT/VF (95% CI, 0.76-1.00) and 0.91 for mortality (95% CI, 0.83-1.00) and were the most significant multivariate predictors. Interpreting trained support vector machine revealed MAP morphologies that, using in silico modeling, revealed higher L-type calcium current or sodium-calcium exchanger as predominant phenotypes for VT/VF.
Machine learning of action potential recordings in patients revealed novel phenotypes for long-term outcomes in ischemic cardiomyopathy. Such computational phenotypes provide an approach which may reveal cellular mechanisms for clinical outcomes and could be applied to other conditions.
通过临床工具或试图将细胞机制转化为床边,缺血性心肌病患者对 VT/VF(室性心动过速/颤动)的易感性难以预测。
通过训练和解释心室单相动作电位(MAP)的机器学习,开发缺血性心肌病患者的计算表型,以揭示预测长期结果的表型。
我们在 42 名冠状动脉疾病和左心室射血分数≤40%的患者中记录了 5706 个心室 MAP 在稳态起搏期间。患者被随机分配到独立的训练和测试队列中,比例为 70:30,重复 K=10 倍。支持向量机和卷积神经网络被训练到 2 个终点:(1)持续性 VT/VF 或(2)3 年后的死亡率。支持向量机提供了更好的分类。对于患者水平的预测,我们计算了个性化 MAP 分数,作为预测每个终点的 MAP 搏动的比例。在独立测试队列中,患者水平的预测产生了 0.90 的持续 VT/VF(95%CI,0.76-1.00)和 0.91 的死亡率(95%CI,0.83-1.00)的 c 统计量,并且是最显著的多变量预测因素。解释训练有素的支持向量机揭示了 MAP 形态,通过计算机建模,揭示了较高的 L 型钙电流或钠钙交换器作为 VT/VF 的主要表型。
在缺血性心肌病患者中,动作电位记录的机器学习揭示了长期结果的新表型。这种计算表型为临床结果提供了一种可能揭示细胞机制的方法,并且可以应用于其他情况。