Yang Shu, Zhang Yunshu
Department of Statistics, North Carolina State University.
Scand Stat Theory Appl. 2023 Mar;50(1):235-265. doi: 10.1111/sjos.12585. Epub 2022 Mar 13.
Propensity score matching has been a long-standing tradition for handling confounding in causal inference, however requiring stringent model assumptions. In this article, we propose novel double score matching (DSM) utilizing both the propensity score and prognostic score. To gain the protection of possible model misspecification, we posit multiple candidate models for each score. We show that the de-biasing DSM estimator achieves the multiple robustness property in that it is consistent if any one of the score models is correctly specified. We characterize the asymptotic distribution for the DSM estimator requiring only one correct model specification based on the martingale representations of the matching estimators and theory for local Normal experiments. We also provide a two-stage replication method for variance estimation and extend DSM for quantile estimation. Simulation demonstrates DSM outperforms single score matching and prevailing multiply robust weighting estimators in the presence of extreme propensity scores.
倾向得分匹配一直是因果推断中处理混杂因素的长期传统方法,然而它需要严格的模型假设。在本文中,我们提出了利用倾向得分和预后得分的新型双重得分匹配(DSM)方法。为了防范可能的模型误设,我们为每个得分设定多个候选模型。我们表明,去偏的DSM估计量具有多重稳健性,即如果任何一个得分模型被正确设定,它就是一致的。我们基于匹配估计量的鞅表示和局部正态实验理论,刻画了仅需一个正确模型设定的DSM估计量的渐近分布。我们还提供了一种用于方差估计的两阶段重复方法,并将DSM扩展用于分位数估计。模拟表明,在存在极端倾向得分的情况下,DSM优于单得分匹配和流行的多重稳健加权估计量。