Wen Lan, Hernán Miguel A, Robins James M
DEPARTMENT OF EPIDEMIOLOGY, HARVARD T. H. CHAN SCHOOL OF PUBLIC HEALTH.
CAUSALAB, HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH.
Scand Stat Theory Appl. 2022 Sep;49(3):1304-1328. doi: 10.1111/sjos.12561. Epub 2021 Nov 11.
Multiply robust estimators of the longitudinal g-formula have recently been proposed to protect against model misspecification better than the standard augmented inverse probability weighted estimator (Rotnitzky et al., 2017; Luedtke et al., 2018). These multiply robust estimators ensure consistency if one of the models for the treatment process or outcome process is correctly specified at each time point. We study the multiply robust estimators of Rotnitzky et al. (2017) in the context of a survival outcome. Specifically, we compare various estimators of the g-formula for survival outcomes in order to 1) understand how the estimators may be related to one another, 2) understand each estimator's robustness to model misspecification, and 3) construct estimators that can be more efficient than others in certain model misspecification scenarios. We propose a modification of the multiply robust estimators to gain efficiency under misspecification of the outcome model by using calibrated propensity scores over non-calibrated propensity scores at each time point. Theoretical results are confirmed via simulation studies, and a practical comparison of these estimators is conducted through an application to the US Veterans Aging Cohort Study.
最近有人提出了纵向g公式的多重稳健估计量,以比标准的增强逆概率加权估计量更好地防范模型误设(Rotnitzky等人,2017年;Luedtke等人,2018年)。如果在每个时间点正确指定了治疗过程或结果过程的模型之一,这些多重稳健估计量可确保一致性。我们在生存结局的背景下研究Rotnitzky等人(2017年)的多重稳健估计量。具体而言,我们比较生存结局的g公式的各种估计量,以便1)了解这些估计量之间可能存在的关系,2)了解每个估计量对模型误设的稳健性,以及3)构建在某些模型误设情况下比其他估计量更有效的估计量。我们提出了对多重稳健估计量的一种修改,通过在每个时间点使用校准的倾向得分而非未校准的倾向得分,在结局模型误设的情况下提高效率。理论结果通过模拟研究得到证实,并通过应用于美国退伍军人老龄化队列研究对这些估计量进行了实际比较。