Suppr超能文献

利用转录组数据诊断新型冠状病毒2:一种机器学习方法。

SARS-CoV-2 Diagnosis Using Transcriptome Data: A Machine Learning Approach.

作者信息

Jeyananthan Pratheeba

机构信息

Faculty of Engineering, University of Jaffna, Jaffna, Sri Lanka.

出版信息

SN Comput Sci. 2023;4(3):218. doi: 10.1007/s42979-023-01703-6. Epub 2023 Feb 17.

Abstract

UNLABELLED

SARS-CoV-2 pandemic is the big issue of the whole world right now. The health community is struggling to rescue the public and countries from this spread, which revives time to time with different waves. Even the vaccination seems to be not prevents this spread. Accurate identification of infected people on time is essential these days to control the spread. So far, Polymerase chain reaction (PCR) and rapid antigen tests are widely used in this identification, accepting their own drawbacks. False negative cases are the menaces in this scenario. To avoid these problems, this study uses machine learning techniques to build a classification model with higher accuracy to filter the COVID-19 cases from the non-COVID individuals. Transcriptome data of the SARS-CoV-2 patients along with the control are used in this stratification using three different feature selection algorithms and seven classification models. Differently expressed genes also studied between these two groups of people and used in this classification. Results shows that mutual information (or DEGs) along with naïve Bayes (or SVM) gives the best accuracy (0.98 ± 0.04) among these methods.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s42979-023-01703-6.

摘要

未标注

目前,新型冠状病毒肺炎疫情是全球面临的重大问题。医疗卫生界正在努力拯救公众和各国,使其免受疫情传播的影响,疫情不时以不同的波次卷土重来。即使接种疫苗似乎也无法阻止这种传播。如今,及时准确地识别感染者对于控制疫情传播至关重要。到目前为止,聚合酶链反应(PCR)和快速抗原检测在这种识别中被广泛使用,但它们都有各自的缺点。假阴性病例在这种情况下是一大威胁。为避免这些问题,本研究使用机器学习技术构建一个准确率更高的分类模型,以从非新冠肺炎患者中筛选出新冠肺炎病例。在分层过程中,使用三种不同的特征选择算法和七种分类模型,将新型冠状病毒肺炎患者与对照组的转录组数据用于分析。还研究了这两组人群之间差异表达的基因,并将其用于分类。结果表明,在这些方法中,互信息(或差异表达基因)与朴素贝叶斯(或支持向量机)相结合可获得最佳准确率(0.98±0.04)。

补充信息

在线版本包含可在10.1007/s42979-023-01703-6获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90bd/9936926/2bf2feae49d7/42979_2023_1703_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验