Suppr超能文献

一种多用途机器学习方法,用于预测巴西圣保罗的 COVID-19 不良预后。

A multipurpose machine learning approach to predict COVID-19 negative prognosis in São Paulo, Brazil.

机构信息

School of Public Health, University of São Paulo, São Paulo, SP, Brazil.

Fundacentro, São Paulo, SP, Brazil.

出版信息

Sci Rep. 2021 Feb 8;11(1):3343. doi: 10.1038/s41598-021-82885-y.

Abstract

The new coronavirus disease (COVID-19) is a challenge for clinical decision-making and the effective allocation of healthcare resources. An accurate prognostic assessment is necessary to improve survival of patients, especially in developing countries. This study proposes to predict the risk of developing critical conditions in COVID-19 patients by training multipurpose algorithms. We followed a total of 1040 patients with a positive RT-PCR diagnosis for COVID-19 from a large hospital from São Paulo, Brazil, from March to June 2020, of which 288 (28%) presented a severe prognosis, i.e. Intensive Care Unit (ICU) admission, use of mechanical ventilation or death. We used routinely-collected laboratory, clinical and demographic data to train five machine learning algorithms (artificial neural networks, extra trees, random forests, catboost, and extreme gradient boosting). We used a random sample of 70% of patients to train the algorithms and 30% were left for performance assessment, simulating new unseen data. In order to assess if the algorithms could capture general severe prognostic patterns, each model was trained by combining two out of three outcomes to predict the other. All algorithms presented very high predictive performance (average AUROC of 0.92, sensitivity of 0.92, and specificity of 0.82). The three most important variables for the multipurpose algorithms were ratio of lymphocyte per C-reactive protein, C-reactive protein and Braden Scale. The results highlight the possibility that machine learning algorithms are able to predict unspecific negative COVID-19 outcomes from routinely-collected data.

摘要

新型冠状病毒病(COVID-19)对临床决策和有效分配医疗资源构成挑战。准确的预后评估对于提高患者的生存率至关重要,尤其是在发展中国家。本研究旨在通过训练多功能算法来预测 COVID-19 患者发生危急情况的风险。我们对来自巴西圣保罗一家大医院的 1040 名经 RT-PCR 确诊为 COVID-19 的患者进行了随访,其中 288 名(28%)患者预后严重,即入住重症监护病房(ICU)、使用机械通气或死亡。我们使用常规收集的实验室、临床和人口统计学数据来训练 5 种机器学习算法(人工神经网络、极端随机树、随机森林、CatBoost 和极端梯度提升)。我们使用 70%的患者随机样本进行算法训练,30%的患者用于性能评估,模拟新的未见数据。为了评估算法是否能够捕捉一般严重预后模式,我们通过将三种结局中的两种结合起来训练每种模型,以预测另一种结局。所有算法均表现出非常高的预测性能(平均 AUROC 为 0.92,敏感性为 0.92,特异性为 0.82)。多功能算法最重要的三个变量是淋巴细胞与 C 反应蛋白的比值、C 反应蛋白和布雷登量表。结果表明,机器学习算法有可能从常规收集的数据中预测非特异性的 COVID-19 不良结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fff9/7870665/4be9da86667b/41598_2021_82885_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验