Wang Chen, Sabo Roy T, Mukhopadhyay Nitai D, Perera Robert A
Department of Biostatistics, Virginia Commonwealth University, Richmond VA, U. S. A.
Int J Clin Trials. 2022 Apr-Jun;9(2):107-117. doi: 10.18203/2349-3259.ijct20221110. Epub 2022 Apr 25.
To exchange the type of subjective Bayesian prior selection for assumptions more directly related to statistical decision making in clinician studies and trials, the decreasingly informative prior (DIP) is considered. We expand standard Bayesian early termination methods in one-parameter statistical models for Phase II clinical trials to include decreasingly informative priors (DIP). These priors are designed to reduce the chance of erroneously adapting trials too early by parameterize skepticism in an amount always equal to the unobserved sample size.
We show how to parameterize these priors based on effective prior sample size and provide examples for common single-parameter models, include Bernoulli, Poisson, and Gaussian distributions. We use a simulation study to search through possible values of total sample sizes and termination thresholds to find the smallest total sample size (N) under admissible designs, which we define as having at least 80% power and no greater than 5% type I error rate.
For Bernoulli, Poisson, and Gaussian distributions, the DIP approach requires fewer patients when admissible designs are achieved. In situations where type I error or power are not admissible, the DIP approach yields similar power and better-controlled type I error with comparable or fewer patients than other Bayesian priors by Thall and Simon.
The DIP helps control type I error rates with comparable or fewer patients, especially for those instances when increased type I error rates arise from erroneous termination early in a trial.
为了在临床医生研究和试验中,将主观贝叶斯先验选择类型替换为与统计决策更直接相关的假设,考虑了信息量递减先验(DIP)。我们将用于II期临床试验的单参数统计模型中的标准贝叶斯早期终止方法进行扩展,以纳入信息量递减先验(DIP)。这些先验旨在通过将怀疑程度参数化为始终等于未观察样本量的量,来减少过早错误调整试验的可能性。
我们展示了如何基于有效先验样本量对这些先验进行参数化,并为常见的单参数模型提供示例,包括伯努利分布、泊松分布和高斯分布。我们使用模拟研究来搜索总样本量和终止阈值的可能值,以找到可接受设计下的最小总样本量(N),我们将可接受设计定义为具有至少80%的检验效能且I型错误率不超过5%。
对于伯努利分布、泊松分布和高斯分布,当实现可接受设计时,DIP方法需要的患者更少。在I型错误或检验效能不可接受的情况下,与Thall和Simon提出的其他贝叶斯先验相比,DIP方法在患者数量相当或更少的情况下,产生相似的检验效能并能更好地控制I型错误。
DIP有助于在患者数量相当或更少的情况下控制I型错误率,特别是对于那些因试验早期错误终止而导致I型错误率增加的情况。