Suppr超能文献

可预测一致性先验有效样本量。

Predictively consistent prior effective sample sizes.

机构信息

Novartis Pharma AG, Basel, Switzerland.

Sheffield University, Sheffield, UK.

出版信息

Biometrics. 2020 Jun;76(2):578-587. doi: 10.1111/biom.13252. Epub 2020 Apr 6.

Abstract

Determining the sample size of an experiment can be challenging, even more so when incorporating external information via a prior distribution. Such information is increasingly used to reduce the size of the control group in randomized clinical trials. Knowing the amount of prior information, expressed as an equivalent prior effective sample size (ESS), clearly facilitates trial designs. Various methods to obtain a prior's ESS have been proposed recently. They have been justified by the fact that they give the standard ESS for one-parameter exponential families. However, despite being based on similar information-based metrics, they may lead to surprisingly different ESS for nonconjugate settings, which complicates many designs with prior information. We show that current methods fail a basic predictive consistency criterion, which requires the expected posterior-predictive ESS for a sample of size N to be the sum of the prior ESS and N. The expected local-information-ratio ESS is introduced and shown to be predictively consistent. It corrects the ESS of current methods, as shown for normally distributed data with a heavy-tailed Student-t prior and exponential data with a generalized Gamma prior. Finally, two applications are discussed: the prior ESS for the control group derived from historical data and the posterior ESS for hierarchical subgroup analyses.

摘要

确定实验的样本量可能具有挑战性,尤其是在通过先验分布纳入外部信息时。这种信息越来越多地用于减少随机临床试验中的对照组规模。了解先验信息的数量,以等效先验有效样本量 (ESS) 表示,显然有助于试验设计。最近已经提出了各种获取先验 ESS 的方法。它们的合理性在于它们为单参数指数族提供了标准的 ESS。然而,尽管基于相似的基于信息的指标,但它们可能会导致非共轭环境下令人惊讶的不同 ESS,这使得许多具有先验信息的设计变得复杂。我们表明,当前的方法未能通过基本的预测一致性标准,该标准要求大小为 N 的样本的后验预测 ESS 是先验 ESS 和 N 的总和。引入了期望局部信息比 ESS,并证明其具有预测一致性。它纠正了当前方法的 ESS,如具有重尾学生 t 先验的正态分布数据和具有广义伽马先验的指数数据所示。最后,讨论了两个应用:从历史数据中得出的对照组的先验 ESS 和分层子组分析的后验 ESS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验