Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom.
J Am Soc Nephrol. 2023 Apr 1;34(4):533-553. doi: 10.1681/ASN.0000000000000071. Epub 2023 Jan 21.
Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research.
Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study.
To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts.
Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota .
These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
肠道微生物群的改变导致了多种疾病的病理生理学变化,这表明慢性尿毒症可能导致肠道菌群失调,从而导致 CKD 的病理生理学变化。各种小型的单队列啮齿动物研究支持了这一假设。在这项对来自啮齿动物肾脏病模型研究的公共存储库数据的荟萃分析中,队列变化远远超过了实验性肾脏病对肠道微生物群的任何影响。尽管在大多数实验中观察到的一些趋势可能归因于肾脏病,但在所有队列中都没有看到肾脏病动物的可重复变化。这些发现表明,啮齿动物研究并没有为“尿毒症菌群失调”的存在提供证据,并且单队列研究不适合在微生物组研究中产生可推广的结果。
啮齿动物研究已经普及了这样一种观点,即尿毒症可能会导致肠道微生物群发生病理性变化,从而促进肾脏病的进展。尽管单队列啮齿动物研究深入了解了各种疾病过程中宿主-微生物群的关系,但由于队列和其他因素的影响,其相关性有限。我们之前曾报道过,代谢组学证据表明,实验动物微生物组的批间变化是实验研究中的一个重要混杂因素。
为了试图确定超越批间变异性且可能归因于肾脏病影响的常见微生物特征,我们从两个在线存储库中下载了所有描述有和没有实验性肾脏病的啮齿动物肠道微生物群分子特征的描述性数据,这些存储库包含了 10 个实验队列中的 127 只啮齿动物。我们使用 R 中的 DADA2 和 Phyloseq 包重新分析了这些数据,R 是一个统计计算和图形系统,并在所有样本的综合数据集和单个实验队列的水平上分析了数据。
队列效应占总样本方差的 69%(P <0.001),远远超过肾脏病的影响(方差的 1.9%,P =0.026)。我们没有发现肾脏病动物中微生物种群动态的普遍趋势,但在许多队列中观察到了一些差异(alpha 多样性增加,这是衡量样本内细菌多样性的指标;lachnospiraceae 和 lactobacillus 的相对减少;某些 clostridia 和机会性分类群的增加),这些差异可能代表肾脏病对肠道微生物群的影响。
这些发现表明,目前肾脏病导致可重复的菌群失调模式的证据不足。我们提倡对存储库数据进行荟萃分析,以确定超越实验变异性的广泛主题。