Beijing Information Technology College, Beijing, China.
Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China.
Big Data. 2024 Apr;12(2):127-140. doi: 10.1089/big.2022.0029. Epub 2023 Feb 27.
Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.
基于 5G-V2X(车对一切)的车联网系统对可靠性和低延迟通信有很高的要求,以进一步提高通信性能。在 V2X 场景中,本文基于信道冲激响应的稀疏性,建立了适合高速移动场景的扩展模型(基本扩展模型)。并提出了一种基于深度学习的信道估计算法,该方法设计了一个多层卷积神经网络来完成频域内插。设计了一个双向控制循环门控单元(双向门控循环单元)来预测时域中的状态。并引入速度参数和多径参数,以在不同移动速度环境下准确训练信道数据。系统仿真表明,所提出的算法可以准确地训练信道的数量。与传统的车联网信道估计算法相比,所提出的算法提高了信道估计的准确性,有效地降低了误码率。