Suppr超能文献

Goldilocks 二维聚合物的超大可开启渗透动力发电

Giant Gateable Osmotic Power Generation from a Goldilocks Two-Dimensional Polymer.

机构信息

Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.

James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Am Chem Soc. 2023 Mar 8;145(9):5261-5269. doi: 10.1021/jacs.2c12853. Epub 2023 Feb 27.

Abstract

Generating electricity from a salinity gradient, known as osmotic power, provides a sustainable energy source, but it requires precise nanoscale control of membranes for maximum performance. Here, we report an ultrathin membrane, where molecule-specific short-range interactions enable giant gateable osmotic power with a record high power density (2 kW/m for 1 M∥1 mM KCl). Our membranes are charge-neutral two-dimensional polymers synthesized from molecular building blocks and operate in a Goldilocks regime that simultaneously maintains high ionic conductivity and permselectivity. Molecular dynamics simulations quantitatively confirm that the functionalized nanopores are small enough for high selectivity through short-range ion-membrane interactions and large enough for fast cross-membrane transport. The short-range mechanism further enables reversible gateable operation, as demonstrated by polarity switching of osmotic power with additional gating ions.

摘要

从盐度梯度中发电,即渗透能,提供了一种可持续的能源,但它需要对膜进行精确的纳米级控制,以实现最大性能。在这里,我们报告了一种超薄膜,其中分子特异性短程相互作用使渗透能具有巨大的可调节性,创下了记录的高功率密度(1 M∥1 mM KCl 时为 2 kW/m)。我们的膜是由分子构建块合成的电荷中性二维聚合物,其工作在一个同时保持高离子电导率和选择性的“金发姑娘”区域。分子动力学模拟定量证实,功能化纳米孔足够小,通过短程离子-膜相互作用实现高选择性,同时又足够大,实现快速跨膜传输。短程机制进一步实现了可调节的可逆操作,如通过外加门控离子实现渗透能的极性转换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验