Chemical Technology Division, CSIR-IHBT, Palampur, HP 176061, India; Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, United States.
Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, Govt. of India), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India.
Comput Biol Chem. 2023 Jun;104:107826. doi: 10.1016/j.compbiolchem.2023.107826. Epub 2023 Feb 12.
Malaria is a major global health issue due to the emergence of resistance to most of the available antimalarial drugs. There is an urgent need to discover new antimalarials to tackle the resistance issue. The present study aims to explore the antimalarial potential of chemical constituents reported from Cissampelos pareira L., a medicinal plant traditionally known for treating malaria. Phytochemically, benzylisoquinolines and bisbenzylisoquinolines are the major classes of alkaloids reported from this plant. In silico molecular docking revealed prominent interactions of bisbenzylisoquinolines such as hayatinine and curine with Pfdihydrofolate reductase (-6.983 Kcal/mol and -6.237 Kcal/mol), PfcGMP-dependent protein kinase (-6.652 Kcal/mol and -7.158 Kcal/mol), and Pfprolyl-tRNA synthetase (-7.569 Kcal/mol and -7.122 Kcal/mol). The binding affinity of hayatinine and curine with identified antimalarial targets was further evaluated using MD-simulation analysis. Among the identified antimalarial targets, the RMSD, RMSF, the radius of gyration, and PCA indicated the formation of stable complexes of hayatinine and curine with Pfprolyl-tRNA synthetase. The outcomes of in silico investigation putatively suggested that bisbenzylisoquinolines may act on the translation of the Plasmodium parasite to exhibit antimalarial potency.
疟疾是一个全球性的主要健康问题,因为大多数现有的抗疟药物都出现了耐药性。迫切需要发现新的抗疟药物来解决耐药性问题。本研究旨在探索从药用植物寻骨风(Cissampelos pareira L.)中分离得到的化学成分的抗疟潜力,该植物传统上用于治疗疟疾。植物化学研究表明,该植物中主要含有苄基异喹啉类和双苄基异喹啉类生物碱。基于计算机的分子对接研究表明,双苄基异喹啉类生物碱如hayatinine 和 curine 与 PfDHFR(-6.983 Kcal/mol 和 -6.237 Kcal/mol)、Pf cGMP 依赖性蛋白激酶(-6.652 Kcal/mol 和 -7.158 Kcal/mol)和 PfProlyl-tRNA 合成酶(-7.569 Kcal/mol 和 -7.122 Kcal/mol)具有显著的相互作用。进一步使用 MD-simulation 分析评估了 hayatinine 和 curine 与鉴定出的抗疟靶标结合的亲和力。在所鉴定的抗疟靶标中,RMSD、RMSF、回转半径和 PCA 表明 hayatinine 和 curine 与 PfProlyl-tRNA 合成酶形成了稳定的复合物。基于计算机的研究结果表明,双苄基异喹啉类可能作用于疟原虫的翻译过程,从而表现出抗疟活性。