Lee Dong-Hee, Park Hamin, Cho Won-Ju
Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea.
Department of Electronic Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea.
Polymers (Basel). 2023 Feb 10;15(4):896. doi: 10.3390/polym15040896.
This study proposed a biocompatible polymeric organic material-based synaptic transistor gated with a biopolymer electrolyte. A polyvinyl alcohol (PVA):chitosan (CS) biopolymer blended electrolyte with high ionic conductivity was used as an electrical double layer (EDL). It served as a gate insulator with a key function as an artificial synaptic transistor. The frequency-dependent capacitance characteristics of PVA:CS-based biopolymer EDL were evaluated using an EDL capacitor (Al/PVA: CS blended electrolyte-based EDL/Pt configuration). Consequently, the PVA:CS blended electrolyte behaved as an EDL owing to high capacitance (1.53 µF/cm) at 100 Hz and internal mobile protonic ions. Electronic synaptic transistors fabricated using the PVA:CS blended electrolyte-based EDL membrane demonstrated basic artificial synaptic behaviors such as excitatory post-synaptic current modulation, paired-pulse facilitation, and dynamic signal-filtering functions by pre-synaptic spikes. In addition, the spike-timing-dependent plasticity was evaluated using synaptic spikes. The synaptic weight modulation was stable during repetitive spike cycles for potentiation and depression. Pattern recognition was conducted through a learning simulation for artificial neural networks (ANNs) using Modified National Institute of Standards and Technology datasheets to examine the neuromorphic computing system capability (high recognition rate of 92%). Therefore, the proposed synaptic transistor is suitable for ANNs and shows potential for biological and eco-friendly neuromorphic systems.
本研究提出了一种基于生物相容性聚合物有机材料的突触晶体管,其由生物聚合物电解质作为栅极。一种具有高离子电导率的聚乙烯醇(PVA):壳聚糖(CS)生物聚合物混合电解质被用作双电层(EDL)。它作为栅极绝缘体,起着人工突触晶体管的关键作用。使用双电层电容器(Al/PVA:CS混合电解质基双电层/Pt结构)评估了基于PVA:CS的生物聚合物双电层的频率依赖性电容特性。结果,由于在100Hz时具有高电容(1.53µF/cm)和内部移动质子离子,PVA:CS混合电解质表现为双电层。使用基于PVA:CS混合电解质的双电层膜制造的电子突触晶体管展示了基本的人工突触行为,如兴奋性突触后电流调制、双脉冲易化以及突触前尖峰的动态信号滤波功能。此外,使用突触尖峰评估了尖峰时间依赖性可塑性。在增强和抑制的重复尖峰周期中,突触权重调制是稳定的。通过使用修改后的美国国家标准与技术研究所数据表对人工神经网络(ANN)进行学习模拟来进行模式识别,以检验神经形态计算系统的能力(高识别率达92%)。因此,所提出的突触晶体管适用于人工神经网络,并在生物和生态友好型神经形态系统中显示出潜力。