Suppr超能文献

基于深度学习的室内移动机器人安全导航上下文感知多级信息融合系统。

Deep-Learning-Based Context-Aware Multi-Level Information Fusion Systems for Indoor Mobile Robots Safe Navigation.

机构信息

Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.

出版信息

Sensors (Basel). 2023 Feb 20;23(4):2337. doi: 10.3390/s23042337.

Abstract

Hazardous object detection (escalators, stairs, glass doors, etc.) and avoidance are critical functional safety modules for autonomous mobile cleaning robots. Conventional object detectors have less accuracy for detecting low-feature hazardous objects and have miss detection, and the false classification ratio is high when the object is under occlusion. Miss detection or false classification of hazardous objects poses an operational safety issue for mobile robots. This work presents a deep-learning-based context-aware multi-level information fusion framework for autonomous mobile cleaning robots to detect and avoid hazardous objects with a higher confidence level, even if the object is under occlusion. First, the image-level-contextual-encoding module was proposed and incorporated with the Faster RCNN ResNet 50 object detector model to improve the low-featured and occluded hazardous object detection in an indoor environment. Further, a safe-distance-estimation function was proposed to avoid hazardous objects. It computes the distance of the hazardous object from the robot's position and steers the robot into a safer zone using detection results and object depth data. The proposed framework was trained with a custom image dataset using fine-tuning techniques and tested in real-time with an in-house-developed mobile cleaning robot, BELUGA. The experimental results show that the proposed algorithm detected the low-featured and occluded hazardous object with a higher confidence level than the conventional object detector and scored an average detection accuracy of 88.71%.

摘要

危险物检测(自动扶梯、楼梯、玻璃门等)和规避是自主移动清洁机器人的关键功能安全模块。传统的物体探测器在检测低特征危险物体时精度较低,存在漏检,并且在物体被遮挡时错误分类率较高。危险物体的漏检或错误分类对移动机器人的运行安全构成威胁。本工作提出了一种基于深度学习的上下文感知多层次信息融合框架,用于自主移动清洁机器人,即使在物体被遮挡的情况下,也能以更高的置信度检测和规避危险物体。首先,提出了图像级上下文编码模块,并将其与 Faster RCNN ResNet 50 物体探测器模型相结合,以提高室内环境中低特征和被遮挡的危险物体的检测能力。此外,还提出了一种安全距离估计函数,用于规避危险物体。它根据检测结果和物体深度数据计算危险物体与机器人位置之间的距离,并引导机器人进入更安全的区域。该框架使用自定义图像数据集进行训练,并使用微调技术进行实时测试,在内部开发的清洁机器人 BELUGA 上进行了测试。实验结果表明,与传统的物体探测器相比,该算法能够以更高的置信度检测低特征和被遮挡的危险物体,平均检测准确率为 88.71%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3487/9966670/93169ba71692/sensors-23-02337-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验