School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
Sci Rep. 2022 Sep 27;12(1):16124. doi: 10.1038/s41598-022-20667-w.
Staircases are some of the most common building structures in urban environments. Stair detection is an important task for various applications, including the environmental perception of exoskeleton robots, humanoid robots, and rescue robots and the navigation of visually impaired people. Most existing stair detection algorithms have difficulty dealing with the diversity of stair structure materials, extreme light and serious occlusion. Inspired by human perception, we propose an end-to-end method based on deep learning. Specifically, we treat the process of stair line detection as a multitask involving coarse-grained semantic segmentation and object detection. The input images are divided into cells, and a simple neural network is used to judge whether each cell contains stair lines. For cells containing stair lines, the locations of the stair lines relative to each cell are regressed. Extensive experiments on our dataset show that our method can achieve 81.49[Formula: see text] accuracy, 81.91[Formula: see text] recall and 12.48 ms runtime, and our method has higher performance in terms of both speed and accuracy than previous methods. A lightweight version can even achieve 300+ frames per second with the same resolution.
楼梯是城市环境中最常见的建筑结构之一。楼梯检测是各种应用的重要任务,包括外骨骼机器人、人形机器人和救援机器人的环境感知以及视障人士的导航。大多数现有的楼梯检测算法都难以处理楼梯结构材料的多样性、极端光照和严重遮挡的问题。受人类感知的启发,我们提出了一种基于深度学习的端到端方法。具体来说,我们将楼梯线检测过程视为一个多任务,涉及粗粒度语义分割和目标检测。输入图像被划分为单元格,然后使用一个简单的神经网络来判断每个单元格是否包含楼梯线。对于包含楼梯线的单元格,回归楼梯线相对于每个单元格的位置。在我们的数据集上进行的广泛实验表明,我们的方法可以达到 81.49[公式:见正文]的准确率、81.91[公式:见正文]的召回率和 12.48 毫秒的运行时间,并且在速度和准确性方面都优于以前的方法。一个轻量级版本甚至可以在相同的分辨率下达到 300+ 帧每秒。