Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France.
Viruses. 2023 Jan 19;15(2):284. doi: 10.3390/v15020284.
Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic receptors and neurotransmitters. We then establish the functional link between lipid rafts and the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-containing, electronegatively charged plasma membrane components. We describe the common features of ganglioside binding domains, which include a wide variety of structures with little sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1 infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1, MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral. We propose a new concept based on the analysis of the electrostatic surface potential to develop, in real time, therapeutic and vaccine strategies adapted to each new viral epidemic.
病毒-细胞相互作用涉及到在实施控制病毒爆发的策略时需要考虑的基本参数。其中,表面静电势可以提供有价值的信息来应对新的传染病。在本文中,我们描述了这个关键参数在红细胞血凝作用中和突触受体和神经递质的共同进化中的作用。然后,我们建立了脂筏和病毒静电势之间的功能联系,特别强调了神经节苷脂,它是含有唾液酸的带负电荷的质膜成分。我们描述了神经节苷脂结合域的共同特征,其中包括具有很少序列同源性但具有控制神经节苷脂识别的关键氨基酸的各种结构。我们分析了静电势在 HIV-1 感染的传播和个体内进化中的作用,包括门控和共受体开关机制。我们展示了如何通过关注影响血凝素表面电势的突变来组织流感病毒的流行监测。我们证明,静电表面势通过调节刺突-神经节苷脂相互作用,控制冠状病毒(SARS-CoV-1、MERS-CoV 和 SARS-CoV-2)的血凝特性以及 SARS-CoV-2 进化的结构动力学。我们将重新定位分子的广谱抗病毒活性与其破坏病毒-筏相互作用的能力联系起来,挑战了抗生素或抗寄生虫药物不能同时也是抗病毒药物的旧概念。我们提出了一个基于静电表面势分析的新概念,以实时开发适应每一种新的病毒流行的治疗和疫苗策略。