INSERM UMR_S 1072, 13015 Marseille, France; Aix-Marseille Université, 13015 Marseille, France.
INSERM UMR_S 1072, 13015 Marseille, France; Aix-Marseille Université, 13015 Marseille, France.
J Infect. 2021 Aug;83(2):197-206. doi: 10.1016/j.jinf.2021.06.001. Epub 2021 Jun 3.
the Covid-19 pandemic has been marked by sudden outbreaks of SARS-CoV-2 variants harboring mutations in both the N-terminal (NTD) and receptor binding (RBD) domains of the spike protein. The goal of this study was to predict the transmissibility of SARS-CoV-2 variants from genomic sequence data.
we used a target-based molecular modeling strategy combined with surface potential analysis of the NTD and RBD.
we observed that both domains act synergistically to ensure optimal virus adhesion, which explains why most variants exhibit concomitant mutations in the RBD and in the NTD. Some mutation patterns affect the affinity of the spike protein for ACE-2. However, other patterns increase the electropositive surface of the spike, with determinant effects on the kinetics of virus adhesion to lipid raft gangliosides. Based on this new view of the structural dynamics of SARS-CoV-2 variants, we defined an index of transmissibility (T-index) calculated from kinetic and affinity parameters of coronavirus binding to host cells. The T-index is characteristic of each variant and predictive of its dissemination in animal and human populations.
the T-index can be used as a health monitoring strategy to anticipate future Covid-19 outbreaks due to the emergence of variants of concern.
Covid-19 大流行的特点是突然出现了在刺突蛋白的 N 端(NTD)和受体结合(RBD)结构域都带有突变的 SARS-CoV-2 变体。本研究的目的是从基因组序列数据预测 SARS-CoV-2 变体的传染性。
我们使用基于靶标的分子建模策略,结合 NTD 和 RBD 的表面电势分析。
我们观察到这两个结构域协同作用以确保病毒最佳附着,这解释了为什么大多数变体在 RBD 和 NTD 同时发生突变。一些突变模式会影响刺突蛋白与 ACE-2 的亲和力。然而,其他模式会增加刺突的正电势表面,对病毒与脂筏神经节苷脂的附着动力学有决定性影响。基于 SARS-CoV-2 变体结构动力学的这一新观点,我们定义了一个传染性指数(T-index),该指数是根据冠状病毒与宿主细胞结合的动力学和亲和力参数计算得出的。T-index 是每个变体的特征,可预测其在动物和人群中的传播。
T-index 可作为一种健康监测策略,用于预测因出现关注变体而导致的未来 Covid-19 爆发。