Liver Diseases-Viral Hepatitis, Liver Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
Viruses. 2023 Feb 20;15(2):587. doi: 10.3390/v15020587.
Epidemics and pandemics have occurred since the beginning of time, resulting in millions of deaths. Many such disease outbreaks are caused by viruses. Some viruses, particularly RNA viruses, are characterized by their high genetic variability, and this can affect certain phenotypic features: tropism, antigenicity, and susceptibility to antiviral drugs, vaccines, and the host immune response. The best strategy to face the emergence of new infectious genomes is prompt identification. However, currently available diagnostic tests are often limited for detecting new agents. High-throughput next-generation sequencing technologies based on metagenomics may be the solution to detect new infectious genomes and properly diagnose certain diseases. Metagenomic techniques enable the identification and characterization of disease-causing agents, but they require a large amount of genetic material and involve complex bioinformatic analyses. A wide variety of analytical tools can be used in the quality control and pre-processing of metagenomic data, filtering of untargeted sequences, assembly and quality control of reads, and taxonomic profiling of sequences to identify new viruses and ones that have been sequenced and uploaded to dedicated databases. Although there have been huge advances in the field of metagenomics, there is still a lack of consensus about which of the various approaches should be used for specific data analysis tasks. In this review, we provide some background on the study of viral infections, describe the contribution of metagenomics to this field, and place special emphasis on the bioinformatic tools (with their capabilities and limitations) available for use in metagenomic analyses of viral pathogens.
自人类出现以来,就一直存在着传染病和大流行病,导致数百万人死亡。许多此类疾病暴发是由病毒引起的。某些病毒,特别是 RNA 病毒,其特征是具有高度遗传变异性,这会影响某些表型特征:嗜性、抗原性以及对抗病毒药物、疫苗和宿主免疫反应的敏感性。应对新传染病基因组出现的最佳策略是及时识别。然而,目前可用的诊断检测方法通常有限,无法检测新的病原体。基于宏基因组学的高通量下一代测序技术可能是检测新传染病基因组并正确诊断某些疾病的解决方案。宏基因组技术能够识别和描述致病因子,但需要大量遗传物质,并涉及复杂的生物信息学分析。可以使用多种分析工具来控制和预处理宏基因组数据,过滤非靶向序列,对读取进行组装和质量控制,以及对序列进行分类分析,以识别新的病毒和已测序并上传到专用数据库的病毒。尽管宏基因组学领域取得了巨大进展,但对于应使用哪种方法来进行特定数据分析任务,仍缺乏共识。在这篇综述中,我们提供了一些关于病毒感染研究的背景知识,描述了宏基因组学对该领域的贡献,并特别强调了可用于病毒病原体宏基因组分析的生物信息学工具(及其功能和局限性)。