Suppr超能文献

一种预测 SARS-CoV-2 抗体保护时间的新数学模型。

A Novel Mathematical Model That Predicts the Protection Time of SARS-CoV-2 Antibodies.

机构信息

Department of Life Science, Dezhou University, Dezhou 253023, China.

School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China.

出版信息

Viruses. 2023 Feb 20;15(2):586. doi: 10.3390/v15020586.

Abstract

Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Constructing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics with virus dynamics based on a comprehensive understanding of immunology principles. This model explicitly formulizes the pernicious effect of the antibody, together with a positive feedback stimulation of the virus-antibody complex on the antibody regeneration. Besides providing quantitative insights into antibody and virus dynamics, it demonstrates good adaptivity in recapturing the virus-antibody interaction. It is proposed that the environmental antigenic substances help maintain the memory cell level and the corresponding neutralizing antibodies secreted by those memory cells. A broader application is also visualized in predicting the antibody protection time caused by a natural infection. Suitable binding antibodies and the presence of massive environmental antigenic substances would prolong the protection time against breakthrough infection. The model also displays excellent fitness and provides good explanations for antibody selection, antibody interference, and self-reinfection. It helps elucidate how our immune system efficiently develops neutralizing antibodies with good binding kinetics. It provides a reasonable explanation for the lower SARS-CoV-2 mortality in the population that was vaccinated with other vaccines. It is inferred that the best strategy for prolonging the vaccine protection time is not repeated inoculation but a directed induction of fast-binding antibodies. Eventually, this model will inform the future construction of an optimal mathematical model and help us fight against those infectious diseases.

摘要

传染病,如 SARS-CoV-2,对公共健康构成重大威胁。构建可靠的数学模型有助于我们定量解释抗体-病毒相互作用的动力学特征。在全面了解免疫学原理的基础上,开发了一种新颖而稳健的模型,将抗体动力学与病毒动力学相结合。该模型明确地描述了抗体的有害影响,以及病毒-抗体复合物对抗体再生的正反馈刺激。除了提供抗体和病毒动力学的定量见解外,它还在重新捕获病毒-抗体相互作用方面表现出良好的适应性。该模型提出,环境抗原物质有助于维持记忆细胞水平和这些记忆细胞分泌的相应中和抗体。它还可以预测自然感染引起的抗体保护时间,具有更广泛的应用前景。合适的结合抗体和大量环境抗原物质的存在可以延长突破感染的保护时间。该模型还显示出出色的适应性,并对抗体选择、抗体干扰和自我感染提供了很好的解释。它有助于阐明我们的免疫系统如何有效地产生具有良好结合动力学的中和抗体。它为接种其他疫苗的人群中 SARS-CoV-2 死亡率较低提供了合理的解释。可以推断,延长疫苗保护时间的最佳策略不是重复接种,而是定向诱导快速结合抗体。最终,该模型将为未来构建最佳数学模型提供信息,并帮助我们对抗这些传染病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc1/9962246/91d38f4a3a3e/viruses-15-00586-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验