Bedekar Prajakta, Luke Rayanne A, Kearsley Anthony J
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA.
Bull Math Biol. 2025 Jan 3;87(2):26. doi: 10.1007/s11538-024-01402-0.
Immune events such as infection, vaccination, and a combination of the two result in distinct time-dependent antibody responses in affected individuals. These responses and event prevalence combine non-trivially to govern antibody levels sampled from a population. Time-dependence and disease prevalence pose considerable modeling challenges that need to be addressed to provide a rigorous mathematical underpinning of the underlying biology. We propose a time-inhomogeneous Markov chain model for event-to-event transitions coupled with a probabilistic framework for antibody kinetics and demonstrate its use in a setting in which individuals can be infected or vaccinated but not both. We conduct prevalence estimation via transition probability matrices using synthetic data. This approach is ideal to model sequences of infections and vaccinations, or personal trajectories in a population, making it an important first step towards a mathematical characterization of reinfection, vaccination boosting, and cross-events of infection after vaccination or vice versa.
诸如感染、疫苗接种以及两者结合等免疫事件会在受影响个体中引发不同的随时间变化的抗体反应。这些反应和事件发生率以复杂的方式共同作用,决定了从人群中采集的抗体水平。时间依赖性和疾病发生率带来了相当大的建模挑战,需要加以解决,以便为基础生物学提供严谨的数学支撑。我们提出了一个用于事件到事件转换的时间非齐次马尔可夫链模型,并结合了抗体动力学的概率框架,展示了其在个体只能被感染或接种疫苗但不能同时进行这两种情况中的应用。我们使用合成数据通过转移概率矩阵进行发生率估计。这种方法非常适合对感染和疫苗接种序列或人群中的个人轨迹进行建模,使其成为朝着对再感染、疫苗接种增强以及接种疫苗后感染的交叉事件(反之亦然)进行数学表征迈出的重要第一步。