Suppr超能文献

使用新型深度神经网络预测住院时间范围。

Predicting length of stay ranges by using novel deep neural networks.

作者信息

Zou Hong, Yang Wei, Wang Meng, Zhu Qiao, Liang Hongyin, Wu Hong, Tang Lijun

机构信息

Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China.

Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610044, Sichuan Province, China.

出版信息

Heliyon. 2023 Feb 9;9(2):e13573. doi: 10.1016/j.heliyon.2023.e13573. eCollection 2023 Feb.

Abstract

BACKGROUND AND AIMS

Accurately predicting length of stay (LOS) is considered a challenging task for health care systems globally. In previous studies on LOS range prediction, researchers commonly pre-classified the LOS ranges, which were the same for all patients in the same classification, and then utilized a classifier for prediction. In this study, we innovatively aimed to predict the specific LOS range for each patient (the LOS range was different for each patient).

METHODS

In the modified deep neural network (DNN), the overall sample error (root mean square error (RMSE) method), the estimated sample error (ERR method), the probability distribution with different loss functions (Dis_Loss1, Dis_Loss2, and Dis_Loss3 method), and the generative adversarial networks (WGAN-GP for LOS method) are used for LOS range prediction. The Medical Information Mart for Intensive Care III (MIMIC-III) database is used to validate these methods.

RESULTS

The RMSE method is convenient for LOS range prediction, but the predicted ranges are all consistent in the same batch of samples. The ERR method can achieve better prediction results in samples with low errors. However, the prediction effect is worse in samples with larger errors. The Dis_Loss1 method encounters a training instability problem. The Dis_Loss2 and Dis_Loss3 methods perform well in making predictions. Although WGAN-GP for LOS method does not show a substantial advantage over other methods, this method might have the potential to improve the predictive performance.

CONCLUSION

The results show that it is possible to achieve an acceptable accurate LOS range prediction through a reasonable model design, which may help physicians in the clinic.

摘要

背景与目的

准确预测住院时长(LOS)对全球医疗保健系统而言是一项具有挑战性的任务。在以往关于住院时长范围预测的研究中,研究人员通常对住院时长范围进行预分类,同一分类中的所有患者的住院时长范围相同,然后使用分类器进行预测。在本研究中,我们创新性地旨在预测每位患者的具体住院时长范围(每位患者的住院时长范围不同)。

方法

在改进的深度神经网络(DNN)中,使用总体样本误差(均方根误差(RMSE)法)、估计样本误差(ERR法)、具有不同损失函数的概率分布(Dis_Loss1、Dis_Loss2和Dis_Loss3法)以及生成对抗网络(用于住院时长的WGAN - GP法)进行住院时长范围预测。使用重症监护医学信息集市III(MIMIC - III)数据库对这些方法进行验证。

结果

RMSE方法便于进行住院时长范围预测,但在同一批样本中预测范围都是一致的。ERR方法在低误差样本中能取得较好的预测结果。然而,在误差较大的样本中预测效果较差。Dis_Loss1方法遇到训练不稳定问题。Dis_Loss2和Dis_Loss3方法在预测方面表现良好。尽管用于住院时长的WGAN - GP方法相较于其他方法未显示出实质性优势,但该方法可能具有提高预测性能的潜力。

结论

结果表明,通过合理的模型设计有可能实现可接受的准确住院时长范围预测,这可能有助于临床医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5122/9958433/7325dc9f2773/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验