Suppr超能文献

PSO-XnB:一种用于预测冠心病患者住院时间的提议模型。

PSO-XnB: a proposed model for predicting hospital stay of CAD patients.

作者信息

Miriyala Geetha Pratyusha, Sinha Arun Kumar

机构信息

School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.

出版信息

Front Artif Intell. 2024 May 3;7:1381430. doi: 10.3389/frai.2024.1381430. eCollection 2024.

Abstract

Coronary artery disease poses a significant challenge in decision-making when predicting the length of stay for a hospitalized patient. This study presents a predictive model-a Particle Swarm Optimized-Enhanced NeuroBoost-that combines the deep autoencoder with an eXtreme gradient boosting model optimized using particle swarm optimization. The model uses a fuzzy set of rules to categorize the length of stay into four distinct classes, followed by data preparation and preprocessing. In this study, the dimensionality of the data is reduced using deep neural autoencoders. The reconstructed data obtained from autoencoders is given as input to an eXtreme gradient boosting model. Finally, the model is tuned with particle swarm optimization to obtain optimal hyperparameters. With the proposed technique, the model achieved superior performance with an overall accuracy of 98.8% compared to traditional ensemble models and past research works. The model also scored highest in other metrics such as precision, recall, and particularly F1 scores for all categories of hospital stay. These scores validate the suitability of our proposed model in medical healthcare applications.

摘要

在预测住院患者的住院时长时,冠状动脉疾病给决策带来了重大挑战。本研究提出了一种预测模型——粒子群优化增强神经提升模型,该模型将深度自动编码器与使用粒子群优化算法优化的极端梯度提升模型相结合。该模型使用一组模糊规则将住院时长分为四个不同类别,随后进行数据准备和预处理。在本研究中,使用深度神经自动编码器降低数据维度。从自动编码器获得的重构数据作为输入提供给极端梯度提升模型。最后,使用粒子群优化算法对模型进行调优以获得最优超参数。通过所提出的技术,该模型取得了卓越的性能,与传统集成模型和以往的研究工作相比,总体准确率达到了98.8%。该模型在其他指标上也得分最高,如精准率、召回率,尤其是在所有住院类别中的F1分数。这些分数验证了我们所提出的模型在医疗保健应用中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae1/11100420/2ef979a362d3/frai-07-1381430-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验