Suppr超能文献

本地土壤传播菌株对真菌病原体及感染柑橘类水果的有效控制。

Efficient control of the fungal pathogens and infecting citrus fruits by native soilborne strains.

作者信息

Vu Tao Xuan, Tran Tram Bao, Tran Minh Binh, Do Trang Thi Kim, Do Linh Mai, Dinh Mui Thi, Thai Hanh-Dung, Pham Duc-Ngoc, Tran Van-Tuan

机构信息

Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam.

Genomics Unit, National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.

出版信息

Heliyon. 2023 Feb 10;9(2):e13663. doi: 10.1016/j.heliyon.2023.e13663. eCollection 2023 Feb.

Abstract

Destruction of citrus fruits by fungal pathogens during preharvest and postharvest stages can result in severe losses for the citrus industry. Antagonistic microorganisms used as biological agents to control citrus pathogens are considered alternatives to synthetic fungicides. In this study, we aimed to identify fungal pathogens causing dominant diseases on citrus fruits in a specialized citrus cultivation region of Vietnam and inspect soilborne isolates with antifungal activity against these pathogens. Two fungal pathogens were characterized as and based on morphological characteristics and ribosomal DNA internal transcribed spacer sequence analyses. Reinfection assays of orange fruits confirmed that causes stem-end rot, and triggers green mold disease. By the heterologous expression of the green fluorescent protein (GFP) in using -mediated transformation, we could observe the fungal infection process of the citrus fruit stem-end rot caused by for the first time. Furthermore, we isolated and selected two soilborne strains with strong antagonistic activity for preventing the decay of citrus fruits by these pathogens. Molecular analyses of 16 S rRNA and genes showed that both isolates belong to . Antifungal activity assays indicated that bacterial culture suspensions could strongly inhibit and , and shield orange fruits from the invasion of the pathogens. Our work provides a highly effective -based preservative solution for combating the fungal pathogens and to protect citrus fruits at the postharvest stages.

摘要

在收获前和收获后阶段,真菌病原体对柑橘类水果的破坏会给柑橘产业造成严重损失。用作控制柑橘病原体的生物制剂的拮抗微生物被认为是合成杀菌剂的替代品。在本研究中,我们旨在鉴定越南一个专门的柑橘种植区中导致柑橘类水果主要病害的真菌病原体,并检查对这些病原体具有抗真菌活性的土传分离物。基于形态特征和核糖体DNA内部转录间隔区序列分析,两种真菌病原体被鉴定为[具体病原体名称1]和[具体病原体名称2]。橙子果实的再感染试验证实,[具体病原体名称1]引起蒂腐病,[具体病原体名称2]引发绿霉病。通过使用[具体介导转化方法]介导的转化在[具体病原体名称2]中异源表达绿色荧光蛋白(GFP),我们首次能够观察到由[具体病原体名称1]引起的柑橘类水果蒂腐病的真菌感染过程。此外,我们分离并筛选出两种具有强拮抗活性的士传[具体细菌名称]菌株,以防止这些病原体对柑橘类水果的腐烂。16S rRNA和[具体基因名称]的分子分析表明,这两种分离物均属于[具体细菌类别]。抗真菌活性试验表明,细菌培养悬液能够强烈抑制[具体病原体名称1]和[具体病原体名称2],并保护橙子果实免受病原体的侵袭。我们的工作为对抗真菌病原体[具体病原体名称1]和[具体病原体名称2]以及在收获后阶段保护柑橘类水果提供了一种基于[具体细菌名称]的高效防腐解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a079/9958435/7b5373649800/gr1.jpg

相似文献

1
Efficient control of the fungal pathogens and infecting citrus fruits by native soilborne strains.
Heliyon. 2023 Feb 10;9(2):e13663. doi: 10.1016/j.heliyon.2023.e13663. eCollection 2023 Feb.
4
Phenylalanine: A Promising Inducer of Fruit Resistance to Postharvest Pathogens.
Foods. 2020 May 18;9(5):646. doi: 10.3390/foods9050646.
5
Antagonistic Activity and the Mechanism of Bacillus amyloliquefaciens DH-4 Against Citrus Green Mold.
Phytopathology. 2018 Nov;108(11):1253-1262. doi: 10.1094/PHYTO-01-17-0032-R. Epub 2018 Oct 2.
6
Chlorine Dioxide Controls Green Mold Caused by in Citrus Fruits and the Mechanism Involved.
J Agric Food Chem. 2020 Nov 25;68(47):13897-13905. doi: 10.1021/acs.jafc.0c05288. Epub 2020 Nov 4.
7
Screening Methods for Isolation of Biocontrol Epiphytic Yeasts against in Lemons.
J Fungi (Basel). 2021 Feb 25;7(3):166. doi: 10.3390/jof7030166.
10
Penicillium digitatum infection mechanisms in citrus: What do we know so far?
Fungal Biol. 2019 Aug;123(8):584-593. doi: 10.1016/j.funbio.2019.05.004. Epub 2019 May 13.

引用本文的文献

本文引用的文献

2
Isolation, Identification, and Antibacterial Mechanisms of QSB-6 and Its Effect on Plant Roots.
Front Microbiol. 2021 Sep 16;12:746799. doi: 10.3389/fmicb.2021.746799. eCollection 2021.
3
Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold.
J Fungi (Basel). 2021 Sep 21;7(9):783. doi: 10.3390/jof7090783.
4
Potential of Bacillus velezensis as a probiotic in animal feed: a review.
J Microbiol. 2021 Jul;59(7):627-633. doi: 10.1007/s12275-021-1161-1. Epub 2021 Jul 1.
5
Antifungal Activity of Cyclic Tetrapeptide from CE 100 against Plant Pathogen .
Pathogens. 2021 Feb 15;10(2):209. doi: 10.3390/pathogens10020209.
6
Species Causing Anthracnose of Citrus in Australia.
J Fungi (Basel). 2021 Jan 12;7(1):47. doi: 10.3390/jof7010047.
7
Antimicrobial Activities of Lipopeptides and Polyketides of for Agricultural Applications.
Molecules. 2020 Oct 27;25(21):4973. doi: 10.3390/molecules25214973.
9
Biological control of postharvest fungal decays in citrus: a review.
Crit Rev Food Sci Nutr. 2022;62(4):861-870. doi: 10.1080/10408398.2020.1829542. Epub 2020 Oct 9.
10
Managing on Fruit Crops: A "Complex" Challenge.
Plant Dis. 2020 Sep;104(9):2301-2316. doi: 10.1094/PDIS-11-19-2378-FE. Epub 2020 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验