Suppr超能文献

基于洛杉矶分类法的反流性食管炎多分类深度学习模型的建立与验证。

Development and Validation of Deep Learning Models for the Multiclassification of Reflux Esophagitis Based on the Los Angeles Classification.

机构信息

Department of General Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou 213200, China.

Department of Gastroenterology, Jintan Affiliated Hospital of Jiangsu University, Changzhou 213200, China.

出版信息

J Healthc Eng. 2023 Feb 18;2023:7023731. doi: 10.1155/2023/7023731. eCollection 2023.

Abstract

This study is to evaluate the feasibility of deep learning (DL) models in the multiclassification of reflux esophagitis (RE) endoscopic images, according to the Los Angeles (LA) classification for the first time. The images were divided into three groups, namely, normal, LA classification A + B, and LA C + D. The images from the HyperKvasir dataset and Suzhou hospital were divided into the training and validation datasets as a ratio of 4 : 1, while the images from Jintan hospital were the independent test set. The CNNs- or Transformer-architectures models (MobileNet, ResNet, Xception, EfficientNet, ViT, and ConvMixer) were transfer learning via Keras. The visualization of the models was proposed using Gradient-weighted Class Activation Mapping (Grad-CAM). Both in the validation set and the test set, the EfficientNet model showed the best performance as follows: accuracy (0.962 and 0.957), recall for LA A + B (0.970 and 0.925) and LA C + D (0.922 and 0.930), Marco-recall (0.946 and 0.928), Matthew's correlation coefficient (0.936 and 0.884), and Cohen's kappa (0.910 and 0.850), which was better than the other models and the endoscopists. According to the EfficientNet model, the Grad-CAM was plotted and highlighted the target lesions on the original images. This study developed a series of DL-based computer vision models with the interpretable Grad-CAM to evaluate the feasibility in the multiclassification of RE endoscopic images. It firstly suggests that DL-based classifiers show promise in the endoscopic diagnosis of esophagitis.

摘要

本研究首次根据洛杉矶(LA)分类法,评估深度学习(DL)模型在反流性食管炎(RE)内镜图像多分类中的可行性。将图像分为三组,即正常、LA 分类 A+B 和 LA C+D。来自 HyperKvasir 数据集和苏州医院的图像按 4:1 的比例分为训练和验证数据集,而来自金坛医院的图像则为独立测试集。通过 Keras 对 CNN 或 Transformer 架构模型(MobileNet、ResNet、Xception、EfficientNet、ViT 和 ConvMixer)进行迁移学习。使用梯度加权类激活映射(Grad-CAM)提出模型的可视化。在验证集和测试集中,EfficientNet 模型表现最佳,如下所示:准确率(0.962 和 0.957)、LA A+B(0.970 和 0.925)和 LA C+D(0.922 和 0.930)的召回率、宏召回率(0.946 和 0.928)、马修斯相关系数(0.936 和 0.884)和科恩氏kappa(0.910 和 0.850),均优于其他模型和内镜医生。根据 EfficientNet 模型,绘制了 Grad-CAM 并突出显示了原始图像上的目标病变。本研究开发了一系列基于 DL 的计算机视觉模型,具有可解释的 Grad-CAM,以评估其在 RE 内镜图像多分类中的可行性。它首次表明基于 DL 的分类器在食管炎的内镜诊断中具有应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6543/9966565/225e45c50702/JHE2023-7023731.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验