Suppr超能文献

多基因风险评分可增强首发精神病个体体重指数增加的预测。

Polygenic risk scores enhance prediction of body mass index increase in individuals with a first episode of psychosis.

机构信息

Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain.

Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.

出版信息

Eur Psychiatry. 2023 Feb 28;66(1):e28. doi: 10.1192/j.eurpsy.2023.9.

Abstract

BACKGROUND

Individuals with a first episode of psychosis (FEP) show rapid weight gain during the first months of treatment, which is associated with a reduction in general physical health. Although genetics is assumed to be a significant contributor to weight gain, its exact role is unknown.

METHODS

We assembled a population-based FEP cohort of 381 individuals that was split into a Training ( = 224) set and a Validation ( = 157) set to calculate the polygenic risk score (PRS) in a two-step process. In parallel, we obtained reference genome-wide association studies for body mass index (BMI) and schizophrenia (SCZ) to examine the pleiotropic landscape between the two traits. BMI PRSs were added to linear models that included sociodemographic and clinical variables to predict BMI increase (∆BMI) in the Validation set.

RESULTS

The results confirmed considerable shared genetic susceptibility for the two traits involving 449 near-independent genomic loci. The inclusion of BMI PRSs significantly improved the prediction of ∆BMI at 12 months after the onset of antipsychotic treatment by 49.4% compared to a clinical model. In addition, we demonstrated that the PRS containing pleiotropic information between BMI and SCZ predicted ∆BMI better at 3 (12.2%) and 12 months (53.2%).

CONCLUSIONS

We prove for the first time that genetic factors play a key role in determining ∆BMI during the FEP. This finding has important clinical implications for the early identification of individuals most vulnerable to weight gain and highlights the importance of examining genetic pleiotropy in the context of medically important comorbidities for predicting future outcomes.

摘要

背景

首次出现精神病症状(FEP)的个体在治疗的头几个月体重迅速增加,这与一般身体健康状况下降有关。尽管遗传被认为是体重增加的重要因素,但确切的作用尚不清楚。

方法

我们组建了一个基于人群的 FEP 队列,共有 381 名个体,分为训练集(=224)和验证集(=157),以两步法计算多基因风险评分(PRS)。同时,我们获得了与体重指数(BMI)和精神分裂症(SCZ)相关的全基因组关联研究的参考数据,以检查两种特征之间的多效性景观。将 BMI PRS 添加到线性模型中,这些模型包含社会人口统计学和临床变量,以预测验证集中 BMI 的增加(∆BMI)。

结果

结果证实了两种特征之间存在相当大的共同遗传易感性,涉及 449 个近乎独立的基因组位点。与临床模型相比,BMI PRS 的纳入将抗精神病治疗开始后 12 个月时 ∆BMI 的预测提高了 49.4%。此外,我们还证明了包含 BMI 和 SCZ 之间多效性信息的 PRS 可以更好地预测 3 个月(12.2%)和 12 个月(53.2%)时的 ∆BMI。

结论

我们首次证明遗传因素在 FEP 期间决定 ∆BMI 中起着关键作用。这一发现对早期识别最容易增重的个体具有重要的临床意义,并强调了在预测未来结果时,在与医学上重要的合并症相关的背景下研究遗传多效性的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf43/10044301/26532360336f/S0924933823000093_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验