Suppr超能文献

具有可控微观结构的石墨烯薄膜用于高效电化学储能

Graphene Film with a Controllable Microstructure for Efficient Electrochemical Energy Storage.

作者信息

Jiang Hedong, Zhang Yaxin, Sheng Fei, Li Wentao, Li Jiake, Huang Dandan, Guo Pingchun, Wang Yanxiang, Zhu Hua

机构信息

School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China.

School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 15;15(10):13086-13096. doi: 10.1021/acsami.2c22312. Epub 2023 Feb 28.

Abstract

The agglomeration of graphene sheets and undesired pore size distribution usually lead to unsatisfactory electrochemical properties of reduced graphene oxide (RGO) film electrodes. Herein, crumpled exfoliated graphene (EG) sheets are adopted as the microstructure-regulating agent to tune the morphology and micro-/mesopore amounts with the aim of increasing active surface sites and ion transportation paths in electrodes. With the optimum ratio between EG and GO, the resulting 75%-EG/RGO shows significantly improved specific gravimetric capacitance () and rate capability when compared with pure RGO electrodes in a symmetrical supercapacitor system. Moreover, when coupling the 75%-EG/RGO cathode with a Zn anode to form a Zn ion hybrid supercapacitor (ZHS), the 75%-EG/RGO exhibits a much higher of 327.39 F g at 0.1 A g and can maintain 91.7% capacitance after 8000 cycles. Systematic X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) measurements reveal that the charge storage mechanism is based on both reversible physical adsorption and dual ion uptake. Furthermore, the quasi-solid-state flexible ZHS also presents high capacitive performance and can maintain ∼100% capacitance under various bending states, demonstrating potential application in wearable electronics. This strategy opens up a new path for constructing high-performance graphene film electrodes.

摘要

石墨烯片的团聚和不理想的孔径分布通常会导致还原氧化石墨烯(RGO)薄膜电极的电化学性能不尽人意。在此,采用皱缩的剥离石墨烯(EG)片作为微观结构调节剂来调节形态以及微孔/介孔数量,目的是增加电极中的活性表面位点和离子传输路径。在EG和GO之间的最佳比例下,与对称超级电容器系统中的纯RGO电极相比,所得的75%-EG/RGO表现出显著提高的比电容()和倍率性能。此外,当将75%-EG/RGO阴极与锌阳极耦合形成锌离子混合超级电容器(ZHS)时,75%-EG/RGO在0.1 A g下表现出高达327.39 F g的比电容,并且在8000次循环后可保持91.7%的电容。系统的X射线衍射(XRD)和X射线光电子能谱(XPS)测量表明,电荷存储机制基于可逆的物理吸附和双离子吸收。此外,准固态柔性ZHS也表现出高电容性能,并且在各种弯曲状态下都能保持约100%的电容,证明了其在可穿戴电子产品中的潜在应用。该策略为构建高性能石墨烯薄膜电极开辟了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验