Babaahmadi Vahid, Pourhosseini S E M, Norouzi Omid, Naderi Hamid Reza
Materials and Textile Engineering Department, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran.
Faculty of Chemistry, University of Tehran, Tehran 1417935840, Iran.
Nanomaterials (Basel). 2023 Jun 15;13(12):1866. doi: 10.3390/nano13121866.
Biochar derived from waste biomass has proven to be an encouraging novel electrode material in supercapacitors. In this work, luffa sponge-derived activated carbon with a special structure is produced through carbonization and KOH activation. The reduced graphene oxide (rGO) and manganese dioxide (MnO) are in-situ synthesized on luffa-activated carbon (LAC) to improve the supercapacitive behavior. The structure and morphology of LAC, LAC-rGO and LAC-rGO-MnO are characterized by the employment of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), BET analysis, Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical performance of electrodes is performed in two and three-electrode systems. In the asymmetrical two-electrode system, the LAC-rGO-MnO//CoO-rGO device shows high specific capacitance (SC), high-rate capability and excellent cycle reversibly in a wide potential window of 0-1.8 V. The maximum specific capacitance (SC) of the asymmetric device is 586 F g at a scan rate of 2 mV s. More importantly, the LAC-rGO-MnO//CoO-rGO device exhibits a specific energy of 31.4 W h kg at a specific power of 400 W kg. Overall, the synergistic effect between the ternary structures of microporous LAC, rGO sheets and MnO nanoparticles leads to the introduction of high-performance hierarchical supercapacitor electrodes.
源自废弃生物质的生物炭已被证明是超级电容器中一种令人鼓舞的新型电极材料。在这项工作中,通过碳化和KOH活化制备了具有特殊结构的丝瓜海绵衍生活性炭。在丝瓜活性炭(LAC)上原位合成还原氧化石墨烯(rGO)和二氧化锰(MnO)以改善其超级电容性能。通过X射线光电子能谱(XPS)、X射线衍射(XRD)、BET分析、拉曼光谱和扫描电子显微镜(SEM)对LAC、LAC-rGO和LAC-rGO-MnO的结构和形貌进行了表征。在两电极和三电极系统中对电极的电化学性能进行了测试。在不对称两电极系统中,LAC-rGO-MnO//CoO-rGO器件在0-1.8 V的宽电位窗口中显示出高比电容(SC)、高倍率性能和优异的循环可逆性。在扫描速率为2 mV s时,不对称器件的最大比电容(SC)为586 F g。更重要的是,LAC-rGO-MnO//CoO-rGO器件在比功率为400 W kg时表现出31.4 W h kg的比能量。总体而言,微孔LAC、rGO片和MnO纳米颗粒的三元结构之间的协同效应导致了高性能分级超级电容器电极的引入。