Suppr超能文献

对用于再现水团 2-25 的基准结合能的成对和多体相互作用势能的性能进行广泛评估。

An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing benchmark binding energies for water clusters = 2-25.

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98195, USA.

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, WA, 99352, USA.

出版信息

Phys Chem Chem Phys. 2023 Mar 8;25(10):7120-7143. doi: 10.1039/d2cp03241d.

Abstract

We assess the performance of 7 pairwise additive (TIP3P, TIP4P, TIP4P-ice, TIP5P, OPC, SPC, SPC/E) and 8 families of many-body potentials (q-AQUA, HIPPO, AMOEBA, EFP, TTM, WHBB, MB-pol, MB-UCB) in reproducing high-level benchmark values, CCSD(T) or MP2 at the complete basis set (CBS) limit for the binding energy and the many-body expansion (MBE) of water clusters = 2-11, 16-17, 20, 25. By including a large range of cluster sizes having dissimilar hydrogen bonding networks, we obtain an understanding of how these potentials perform for different hydrogen bonding arrangements that are mostly outside of their parameterization range. While it is appropriate to compare the results of based many-body potentials directly to the electronic binding energies ('s), the pairwise additive ones are compared to the enthalpies at = 298 K, Δ(298 K), as the latter class of force fields are parametrized to reproduce enthalpies (implicitly accounting for zero-point energy corrections) rather than binding energies. We find that all pairwise additive potentials considered overestimate the reference Δ values for the = 2-25 clusters by >13%. For the water dimer ( = 2) in particular, the errors are in the range 83-119% for the pairwise additive potentials studied since these are based on an effective rather than the true 2-body interaction specifically designed as a means of partially accounting for the missing many-body terms. This stronger 2-body interaction is achieved by an enhanced monomer dipole moment that mimics its increase from the gas phase monomer to the condensed phase value. Indeed, for cluster sizes ≥ 4 the percent deviations become slightly smaller (albeit all exceeding 13%). In contrast, we find that the many-body potentials perform more accurately in reproducing the electronic binding energies ('s) throughout the entire cluster range ( = 2-25), all reproducing the benchmark binding energies within ±7% of the respective CBS values. We further assess the ability of a subset of the many-body potentials (MB-UCB, q-AQUA, MB-pol, and TTM2.1-F) to also reproduce the magnitude of the many-body energy terms for water cluster sizes = 7, 10, 16 and 17. The potentials show an overall good agreement with the available benchmark values. However, we identify characteristic differences upon comparing the many-body terms at both the -optimized geometries and the respective potential-optimized geometries to the reference values. Additionally, by applying this analysis to a wide range of cluster sizes, trends in the MBE of the potentials with increasing cluster size can be identified. Finally, in an attempt to draw a parallel between the pairwise additive and many-body potentials, we report the analysis of the individual molecular dipole moments for water clusters with 1 to ∼4 solvation shells with the TTM2.1-F potential. We find that the internally solvated water molecules have in general a larger molecular dipole moment ranging from 2.6-3.0 D. This justifies the use of an enhanced, with respect to the gas-phase value, molecular dipole moment for the pairwise additive potentials, which is intended to fold in the many body terms into an effective (enhanced) pairwise interaction through the choice of the charges. These results have important implications for the development of future generations of efficient, transferable, and highly accurate classical interaction potentials in both the pairwise additive and many-body categories.

摘要

我们评估了 7 种成对添加剂(TIP3P、TIP4P、TIP4P-ice、TIP5P、OPC、SPC、SPC/E)和 8 种多体势家族(q-AQUA、HIPPO、AMOEBA、EFP、TTM、WHBB、MB-pol、MB-UCB)在再现高水平基准值方面的性能,包括结合能和多体展开(MBE)的高次水团簇 = 2-11、16-17、20、25 的 CCSD(T)或 MP2 值。通过包括具有不同氢键网络的一系列大小不同的簇,我们了解了这些势在大多数超出其参数化范围的不同氢键排列下的表现。虽然直接将基于的多体势的结果与电子结合能('s)进行比较是合适的,但成对添加剂势则与 298 K 时的焓(Δ(298 K))进行比较,因为后者类别的力场是为了再现焓(隐含地考虑零点能校正)而不是结合能而参数化的。我们发现,所考虑的所有成对添加剂势都高估了参考Δ值,对于 = 2-25 的簇,误差超过 13%。对于水二聚体(= 2),特别是在研究的成对添加剂势中,误差范围在 83-119%之间,因为这些势基于有效而不是真实的 2 体相互作用,特别设计是为了部分补偿缺失的多体项。这种更强的 2 体相互作用是通过增强单体偶极矩来实现的,它模拟了从气相单体到凝聚相值的增加。事实上,对于簇大小≥4,偏差百分比变得略小(尽管都超过 13%)。相比之下,我们发现多体势在整个簇范围(= 2-25)内更准确地再现电子结合能('s),所有势都在±7%的范围内再现各自的 CBS 值。我们进一步评估了多体势(MB-UCB、q-AQUA、MB-pol 和 TTM2.1-F)的子集也能够再现水簇大小为 7、10、16 和 17 的多体能量项的大小的能力。这些势与可用的基准值总体上具有良好的一致性。然而,我们在比较 -优化几何形状和各自的势优化几何形状与参考值的多体项时,发现了一些特征差异。此外,通过将这种分析应用于广泛的簇大小,我们可以识别出随着簇大小增加多体势的 MBE 的趋势。最后,为了在成对添加剂和多体势之间建立平行关系,我们报告了用 TTM2.1-F 势分析具有 1 到大约 4 个溶剂化壳的水簇的单个分子偶极矩。我们发现,内部溶剂化的水分子通常具有更大的分子偶极矩,范围为 2.6-3.0 D。这证明了在成对添加剂势中使用增强的、相对于气相值的分子偶极矩的合理性,这是通过选择电荷将多体项折叠到有效(增强)成对相互作用中。这些结果对未来发展高效、可转移和高度准确的经典相互作用势具有重要意义,无论是在成对添加剂还是多体类别中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验