School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland.
J Chem Inf Model. 2023 Mar 13;63(5):1490-1505. doi: 10.1021/acs.jcim.2c01479. Epub 2023 Feb 28.
The KRAS switch-II pocket (SII-P) has proven to be one of the most successful tools for targeting KRAS with small molecules to date. This has been demonstrated with several KRAS(G12C)-targeting covalent inhibitors, already resulting in two FDA-approved drugs. Several earlier-stage compounds have also been reported to engage KRAS SII-P with other position 12 mutants, including G12D, G12S, and G12R. A highly conserved water molecule exists in the KRAS SII-P, linking Thr58 of switch-II and Gly10 of β1 sheet. This conserved water is also present in the cocrystal structures of most of the disclosed small-molecule inhibitors but is only displaced by a handful of SII-P binders. Here, we evaluated the conserved water molecule energetics by the WaterMap for the SII-P binders with publicly disclosed structures and studied the water behavior in the presence of selected inhibitors by microsecond timescale molecular dynamics (MD) simulations using two water models (total simulation time of 120 μs). Our data revealed the high-energy nature of this hydration site when coexisting with an SII-P binder and that there is a preference for a single isolated hydration site in this location within the most advanced compounds. Furthermore, water displacement was only achieved with a few disclosed compounds and was suboptimal, as for instance a cyanomethyl group as a water displacer appears to introduce repulsion with the native conformation of Thr58. These results suggested that this conserved water should be considered more central when designing new inhibitors, especially in the design of noncovalent inhibitors targeting the SII-P.
KRAS 开关 II 口袋(SII-P)已被证明是迄今为止用小分子靶向 KRAS 最成功的工具之一。这一点已经被几种 KRAS(G12C)靶向共价抑制剂所证明,这些抑制剂已经导致了两种获得 FDA 批准的药物。还有几种早期阶段的化合物也被报道与其他位置 12 的突变体(包括 G12D、G12S 和 G12R)结合 KRAS SII-P。在 KRAS SII-P 中存在一个高度保守的水分子,连接着开关 II 的 Thr58 和 β1 片层的 Gly10。这个保守的水分子也存在于大多数公开的小分子抑制剂的共晶结构中,但只有少数 SII-P 结合物能够将其取代。在这里,我们通过 WaterMap 评估了具有公开结构的 SII-P 结合物中保守水分子的能量学,并通过微秒时间尺度的分子动力学(MD)模拟研究了在选定抑制剂存在下的水分子行为,使用了两种水分子模型(总共模拟时间为 120 μs)。我们的数据揭示了在与 SII-P 结合物共存时,这个水合位点具有高能性质,并且在最先进的化合物中,这个位置更喜欢单个孤立的水合位点。此外,只有少数公开的化合物能够实现水分子的取代,而且效果并不理想,例如作为水分子取代物的氰甲基基团似乎会引入与 Thr58 天然构象的排斥。这些结果表明,在设计新的抑制剂时,尤其是在设计针对 SII-P 的非共价抑制剂时,应该更关注这个保守的水分子。