Suppr超能文献

[基于多尺度卷积和自注意力机制的睡眠觉醒自动检测]

[Automated detection of sleep-arousal using multi-scale convolution and self-attention mechanism].

作者信息

Li Fan, Xu Yan, Zhang Bin, Cong Fengyu

机构信息

School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China.

Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):27-34. doi: 10.7507/1001-5515.202204052.

Abstract

In clinical, manually scoring by technician is the major method for sleep arousal detection. This method is time-consuming and subjective. This study aimed to achieve an end-to-end sleep-arousal events detection by constructing a convolutional neural network based on multi-scale convolutional layers and self-attention mechanism, and using 1 min single-channel electroencephalogram (EEG) signals as its input. Compared with the performance of the baseline model, the results of the proposed method showed that the mean area under the precision-recall curve and area under the receiver operating characteristic were both improved by 7%. Furthermore, we also compared the effects of single modality and multi-modality on the performance of the proposed model. The results revealed the power of single-channel EEG signals in automatic sleep arousal detection. However, the simple combination of multi-modality signals may be counterproductive to the improvement of model performance. Finally, we also explored the scalability of the proposed model and transferred the model into the automated sleep staging task in the same dataset. The average accuracy of 73% also suggested the power of the proposed method in task transferring. This study provides a potential solution for the development of portable sleep monitoring and paves a way for the automatic sleep data analysis using the transfer learning method.

摘要

在临床上,由技术人员进行人工评分是睡眠觉醒检测的主要方法。这种方法既耗时又主观。本研究旨在通过构建一个基于多尺度卷积层和自注意力机制的卷积神经网络,并使用1分钟单通道脑电图(EEG)信号作为输入,来实现端到端的睡眠觉醒事件检测。与基线模型的性能相比,所提方法的结果表明,精确率-召回率曲线下的平均面积和受试者工作特征曲线下的面积均提高了7%。此外,我们还比较了单模态和多模态对所提模型性能的影响。结果揭示了单通道EEG信号在自动睡眠觉醒检测中的作用。然而,多模态信号的简单组合可能对模型性能的提升产生反作用。最后,我们还探索了所提模型的可扩展性,并将该模型转移到同一数据集中的自动睡眠分期任务中。73%的平均准确率也表明了所提方法在任务转移方面的作用。本研究为便携式睡眠监测的发展提供了一种潜在的解决方案,并为使用迁移学习方法进行自动睡眠数据分析铺平了道路。

相似文献

1
[Automated detection of sleep-arousal using multi-scale convolution and self-attention mechanism].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):27-34. doi: 10.7507/1001-5515.202204052.
2
Multi-task learning for arousal and sleep stage detection using fully convolutional networks.
J Neural Eng. 2023 Oct 9;20(5). doi: 10.1088/1741-2552/acfe3a.
3
Automatic Sleep-Arousal Detection with Single-Lead EEG Using Stacking Ensemble Learning.
Sensors (Basel). 2021 Sep 9;21(18):6049. doi: 10.3390/s21186049.
4
MixSleepNet: A Multi-Type Convolution Combined Sleep Stage Classification Model.
Comput Methods Programs Biomed. 2024 Feb;244:107992. doi: 10.1016/j.cmpb.2023.107992. Epub 2023 Dec 27.
6
Trend Statistics Network and Channel invariant EEG Network for sleep arousal study.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5716-5722. doi: 10.1109/EMBC.2019.8857553.
7
Automatic Sleep Staging Based on Contextual Scalograms and Attention Convolution Neural Network Using Single-Channel EEG.
IEEE J Biomed Health Inform. 2024 Feb;28(2):801-811. doi: 10.1109/JBHI.2023.3332503. Epub 2024 Feb 5.
9
A deep learning-based algorithm for detection of cortical arousal during sleep.
Sleep. 2020 Dec 14;43(12). doi: 10.1093/sleep/zsaa120.

本文引用的文献

1
Automatic Sleep-Arousal Detection with Single-Lead EEG Using Stacking Ensemble Learning.
Sensors (Basel). 2021 Sep 9;21(18):6049. doi: 10.3390/s21186049.
2
A deep learning-based algorithm for detection of cortical arousal during sleep.
Sleep. 2020 Dec 14;43(12). doi: 10.1093/sleep/zsaa120.
3
Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut.
Cell. 2020 Jun 11;181(6):1307-1328.e15. doi: 10.1016/j.cell.2020.04.049. Epub 2020 Jun 4.
4
Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.
Lancet Respir Med. 2019 Aug;7(8):687-698. doi: 10.1016/S2213-2600(19)30198-5. Epub 2019 Jul 9.
5
The National Sleep Research Resource: towards a sleep data commons.
J Am Med Inform Assoc. 2018 Oct 1;25(10):1351-1358. doi: 10.1093/jamia/ocy064.
6
Prevalence of obstructive sleep apnea in the general population: A systematic review.
Sleep Med Rev. 2017 Aug;34:70-81. doi: 10.1016/j.smrv.2016.07.002. Epub 2016 Jul 18.
7
EEG arousal norms by age.
J Clin Sleep Med. 2007 Apr 15;3(3):271-4.
9
Automobile accidents in patients with sleep apnea syndrome. An epidemiological and mechanistic study.
Am J Respir Crit Care Med. 1998 Jul;158(1):18-22. doi: 10.1164/ajrccm.158.1.9709135.
10
Respiratory arousal from sleep: mechanisms and significance.
Sleep. 1997 Aug;20(8):654-75. doi: 10.1093/sleep/20.8.654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验