Suppr超能文献

基于挤压激励模块和序列多尺度卷积神经网络的新生儿睡眠分期端到端模型

A Sequential End-to-End Neonatal Sleep Staging Model with Squeeze and Excitation Blocks and Sequential Multi-Scale Convolution Neural Networks.

机构信息

Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China.

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, P. R. China.

出版信息

Int J Neural Syst. 2024 Mar;34(3):2450013. doi: 10.1142/S0129065724500138.

Abstract

Automatic sleep staging offers a quick and objective assessment for quantitatively interpreting sleep stages in neonates. However, most of the existing studies either do not encompass any temporal information, or simply apply neural networks to exploit temporal information at the expense of high computational overhead and modeling ambiguity. This limits the application of these methods to multiple scenarios. In this paper, a sequential end-to-end sleep staging model, SeqEESleepNet, which is competent for parallelly processing sequential epochs and has a fast training rate to adapt to different scenarios, is proposed. SeqEESleepNet consists of a sequence epoch generation (SEG) module, a sequential multi-scale convolution neural network (SMSCNN) and squeeze and excitation (SE) blocks. The SEG module expands independent epochs into sequential signals, enabling the model to learn the temporal information between sleep stages. SMSCNN is a multi-scale convolution neural network that can extract both multi-scale features and temporal information from the signal. Subsequently, the followed SE block can reassign the weights of features through mapping and pooling. Experimental results exhibit that in a clinical dataset, the proposed method outperforms the state-of-the-art approaches, achieving an overall accuracy, F1-score, and Kappa coefficient of 71.8%, 71.8%, and 0.684 on a three-class classification task with a single channel EEG signal. Based on our overall results, we believe the proposed method could pave the way for convenient multi-scenario neonatal sleep staging methods.

摘要

自动睡眠分期为定量分析新生儿睡眠分期提供了一种快速、客观的评估方法。然而,大多数现有的研究要么不包含任何时间信息,要么仅仅是应用神经网络来利用时间信息,而牺牲了高计算开销和建模模糊性。这限制了这些方法在多个场景中的应用。在本文中,提出了一种端到端的顺序睡眠分期模型 SeqEESleepNet,它能够并行处理顺序的时间序列,并且具有快速的训练速度,以适应不同的场景。SeqEESleepNet 由一个序列时间序列生成模块 (SEG)、一个顺序多尺度卷积神经网络 (SMSCNN) 和挤压和激励 (SE) 块组成。SEG 模块将独立的时间序列扩展成顺序信号,使模型能够学习睡眠阶段之间的时间信息。SMSCNN 是一个多尺度卷积神经网络,能够从信号中提取多尺度特征和时间信息。随后,后续的 SE 块可以通过映射和池化重新分配特征的权重。实验结果表明,在一个临床数据集上,与最先进的方法相比,所提出的方法在单通道 EEG 信号的三分类任务上取得了 71.8%、71.8%和 0.684 的整体准确率、F1 得分和 Kappa 系数。基于我们的总体结果,我们相信所提出的方法可以为方便的多场景新生儿睡眠分期方法铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验