Suppr超能文献

高维生存模型中的中介分析。

High-dimensional mediation analysis in survival models.

机构信息

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

PLoS Comput Biol. 2020 Apr 17;16(4):e1007768. doi: 10.1371/journal.pcbi.1007768. eCollection 2020 Apr.

Abstract

Mediation analysis with high-dimensional DNA methylation markers is important in identifying epigenetic pathways between environmental exposures and health outcomes. There have been some methodology developments of mediation analysis with high-dimensional mediators. However, high-dimensional mediation analysis methods for time-to-event outcome data are still yet to be developed. To address these challenges, we propose a new high-dimensional mediation analysis procedure for survival models by incorporating sure independent screening and minimax concave penalty techniques for variable selection, with the Sobel and the joint method for significance test of indirect effect. The simulation studies show good performance in identifying correct biomarkers, false discovery rate control, and minimum estimation bias of the proposed procedure. We also apply this approach to study the causal pathway from smoking to overall survival among lung cancer patients potentially mediated by 365,307 DNA methylations in the TCGA lung cancer cohort. Mediation analysis using a Cox proportional hazards model estimates that patients who have serious smoking history increase the risk of lung cancer through methylation markers including cg21926276, cg27042065, and cg26387355 with significant hazard ratios of 1.2497(95%CI: 1.1121, 1.4045), 1.0920(95%CI: 1.0170, 1.1726), and 1.1489(95%CI: 1.0518, 1.2550), respectively. The three methylation sites locate in the three genes which have been showed to be associated with lung cancer event or overall survival. However, the three CpG sites (cg21926276, cg27042065 and cg26387355) have not been reported, which are newly identified as the potential novel epigenetic markers linking smoking and survival of lung cancer patients. Collectively, the proposed high-dimensional mediation analysis procedure has good performance in mediator selection and indirect effect estimation.

摘要

中介分析对于识别环境暴露与健康结果之间的表观遗传途径非常重要。已经有一些针对高维中介的中介分析方法的发展。然而,用于时变结果数据的高维中介分析方法仍有待开发。为了解决这些挑战,我们提出了一种新的用于生存模型的高维中介分析程序,该程序通过结合Sure 独立筛选和最小最大凹惩罚技术进行变量选择,并使用 Sobel 和联合方法进行间接效应的显著性检验。模拟研究表明,该方法在识别正确的生物标志物、控制假发现率和最小化估计偏倚方面具有良好的性能。我们还将该方法应用于 TCGA 肺癌队列中 365307 个 DNA 甲基化潜在介导的吸烟与肺癌患者总生存的因果途径研究。使用 Cox 比例风险模型进行中介分析估计,有严重吸烟史的患者通过包括 cg21926276、cg27042065 和 cg26387355 的甲基化标志物增加患肺癌的风险,其危险比分别为 1.2497(95%CI:1.1121,1.4045)、1.0920(95%CI:1.0170,1.1726)和 1.1489(95%CI:1.0518,1.2550)。这三个甲基化位点位于三个已被证明与肺癌事件或总生存相关的基因中。然而,这三个 CpG 位点(cg21926276、cg27042065 和 cg26387355)尚未报道,它们被新识别为与吸烟和肺癌患者生存相关的潜在新型表观遗传标志物。总体而言,所提出的高维中介分析程序在中介选择和间接效应估计方面具有良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4a/7190184/0537a7cb5cfd/pcbi.1007768.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验