Suppr超能文献

联合镜像程序:控制用于识别同步信号的错误发现率。

Joint mirror procedure: controlling false discovery rate for identifying simultaneous signals.

作者信息

Deng Linsui, He Kejun, Zhang Xianyang

机构信息

School of Data Science, The Chinese University of Hong Kong, Shenzhen 518172, China.

Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China, Beijing 100872, China.

出版信息

Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae142.

Abstract

In many applications, the process of identifying a specific feature of interest often involves testing multiple hypotheses for their joint statistical significance. Examples include mediation analysis, which simultaneously examines the existence of the exposure-mediator and the mediator-outcome effects, and replicability analysis, aiming to identify simultaneous signals that exhibit statistical significance across multiple independent studies. In this work, we present a new approach called the joint mirror (JM) procedure that effectively detects such features while maintaining false discovery rate (FDR) control in finite samples. The JM procedure employs an iterative method that gradually shrinks the rejection region based on progressively revealed information until a conservative estimate of the false discovery proportion is below the target FDR level. Additionally, we introduce a more stringent error measure known as the composite FDR (cFDR), which assigns weights to each false discovery based on its number of null components. We use the leave-one-out technique to prove that the JM procedure controls the cFDR in finite samples. To implement the JM procedure, we propose an efficient algorithm that can incorporate partial ordering information. Through extensive simulations, we show that our procedure effectively controls the cFDR and enhances statistical power across various scenarios, including the case that test statistics are dependent across the features. Finally, we showcase the utility of our method by applying it to real-world mediation and replicability analyses.

摘要

在许多应用中,识别感兴趣的特定特征的过程通常涉及检验多个假设的联合统计显著性。例如包括中介分析,它同时考察暴露-中介效应和中介-结果效应的存在情况,以及可重复性分析,旨在识别在多个独立研究中呈现统计显著性的同时信号。在这项工作中,我们提出了一种称为联合镜像(JM)程序的新方法,该方法能在有限样本中有效检测此类特征,同时保持对错误发现率(FDR)的控制。JM程序采用一种迭代方法,基于逐步揭示的信息逐渐缩小拒绝区域,直到对错误发现比例的保守估计低于目标FDR水平。此外,我们引入了一种更严格的误差度量,称为复合FDR(cFDR),它根据每个错误发现的零分量数量为其分配权重。我们使用留一法来证明JM程序在有限样本中控制cFDR。为了实现JM程序,我们提出了一种可以纳入偏序信息的高效算法。通过广泛的模拟,我们表明我们的程序在各种情况下都能有效控制cFDR并提高统计功效,包括检验统计量在各特征间相关的情况。最后,我们通过将其应用于实际的中介分析和可重复性分析来展示我们方法的实用性。

相似文献

本文引用的文献

3
A multiple-testing procedure for high-dimensional mediation hypotheses.一种用于高维中介假设的多重检验程序。
J Am Stat Assoc. 2022;117(537):198-213. doi: 10.1080/01621459.2020.1765785. Epub 2020 Jun 24.
4
Weighted False Discovery Rate Control in Large-Scale Multiple Testing.大规模多重检验中的加权错误发现率控制
J Am Stat Assoc. 2018;113(523):1172-1183. doi: 10.1080/01621459.2017.1336443. Epub 2018 Jun 12.
6
Replication in genome-wide association studies.全基因组关联研究中的复制
Stat Sci. 2009 Nov 1;24(4):561-573. doi: 10.1214/09-STS290.
7
Screening for partial conjunction hypotheses.部分合取假设的筛选
Biometrics. 2008 Dec;64(4):1215-22. doi: 10.1111/j.1541-0420.2007.00984.x. Epub 2008 Feb 6.
9
Conjunction revisited.再谈连词。
Neuroimage. 2005 Apr 15;25(3):661-7. doi: 10.1016/j.neuroimage.2005.01.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验