Suppr超能文献

基于 ICEEMDAN-WSD-BiLSTM 和 ESN 的新型降雨预测模型。

A new rainfall prediction model based on ICEEMDAN-WSD-BiLSTM and ESN.

机构信息

Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.

Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou, 450046, China.

出版信息

Environ Sci Pollut Res Int. 2023 Apr;30(18):53381-53396. doi: 10.1007/s11356-023-25906-9. Epub 2023 Mar 1.

Abstract

Precipitation, as an important indicator describing the evolution of the regional climate system, plays an important role in understanding the spatial and temporal distribution characteristics of regional precipitation. Scientific and accurate prediction of regional precipitation is helpful to provide theoretical basis for relevant departments to guide flood and drought control. To address the uncertainty and nonlinear characteristics of precipitation series, this paper uses the established improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN)-wavelet signal denoising (WSD)-bi-directional long short-term memory (BiLSTM), and echo state network (ESN) models to predict precipitation of four cities in southern Anhui Province. The BiLSTM is used to predict the high-frequency components and the ESN to predict the low-frequency components, thus avoiding the influence between the two neural network predictions. The results show that the ICEEMDAN-WSD-BiLSTM and ESN models are more accurate. The average relative error reached 2.64% and the NSE (Nash-Sutcliffe efficiency coefficient) was 0.91, which was significantly better than the other four models. The model reveals the temporal change pattern and evolution characteristics of future precipitation, guides flood prevention and mitigation, and has certain theoretical significance and application value for promoting regional sustainable development.

摘要

降水作为描述区域气候系统演变的重要指标,在理解区域降水的时空分布特征方面起着重要作用。科学准确地预测区域降水有助于为相关部门指导防洪抗旱提供理论依据。针对降水序列的不确定性和非线性特征,本文采用建立的改进完备集合经验模态分解自适应噪声(ICEEMDAN)-小波信号去噪(WSD)-双向长短时记忆(BiLSTM)和回声状态网络(ESN)模型,对皖南四市的降水进行预测。BiLSTM 用于预测高频分量,ESN 用于预测低频分量,从而避免了两个神经网络预测之间的相互影响。结果表明,ICEEMDAN-WSD-BiLSTM 和 ESN 模型更为准确。平均相对误差达到 2.64%,纳什效率系数(NSE)为 0.91,明显优于其他四个模型。该模型揭示了未来降水的时间变化模式和演变特征,指导防洪抗旱,对促进区域可持续发展具有一定的理论意义和应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验