Suppr超能文献

一种基于逐步分解技术的新型耦合降雨预测模型。

A novel coupled rainfall prediction model based on stepwise decomposition technique.

作者信息

Jiao Xueran, He Zongheng

机构信息

Henan Key Laboratory of Water Pollution Control and Rehabilitation, Henan University of Urban Construction, Pingdingshan, 467000, China.

出版信息

Sci Rep. 2024 May 13;14(1):10853. doi: 10.1038/s41598-024-61855-0.

Abstract

The traditional decomposed ensemble prediction model decomposes the entire rainfall sequence into several sub-sequences, dividing them into training and testing periods for modeling. During sample construction, future information is erroneously mixed into the training data, making it challenging to apply in practical rainfall forecasting. This paper proposes a novel stepwise decomposed ensemble coupling model, realized through variational mode decomposition (VMD) and bidirectional long short-term memory neural network (BiLSTM) models. Model parameters are optimized using an improved particle swarm optimization (IPSO). The performance of the model was evaluated using rainfall data from the Southern Four Lakes basin. The results indicate that: (1) Compared to the PSO algorithm, the IPSO algorithm-coupled model shows a minimum decrease of 2.70% in MAE and at least 2.62% in RMSE across the four cities in the Southern Four Lakes basin; the IPSO algorithm results in a minimum decrease of 25.58% in MAE and at least 28.19% in RMSE for the VMD-BiLSTM model. (2) When compared to IPSO-BiLSTM, the VMD-IPSO-BiLSTM based on the stepwise decomposition technique exhibits a minimum decrease of 26.54% in MAE and at least 34.16% in RMSE. (3) The NSE for the testing period of the VMD-IPSO-BiLSTM model in each city surpasses 0.88, indicating higher prediction accuracy and providing new insights for optimizing rainfall forecasting.

摘要

传统的分解集成预测模型将整个降雨序列分解为几个子序列,并将它们划分为训练期和测试期进行建模。在样本构建过程中,未来信息被错误地混入训练数据中,这使得其在实际降雨预报中的应用具有挑战性。本文提出了一种新颖的逐步分解集成耦合模型,该模型通过变分模态分解(VMD)和双向长短期记忆神经网络(BiLSTM)实现。使用改进的粒子群优化算法(IPSO)对模型参数进行优化。利用南四湖流域的降雨数据对模型性能进行评估。结果表明:(1)与PSO算法相比,IPSO算法耦合模型在南四湖流域四个城市的平均绝对误差(MAE)最小下降2.70%,均方根误差(RMSE)至少下降2.62%;对于VMD - BiLSTM模型,IPSO算法使MAE最小下降25.58%,RMSE至少下降28.19%。(2)与IPSO - BiLSTM相比,基于逐步分解技术的VMD - IPSO - BiLSTM的MAE最小下降26.54%,RMSE至少下降34.16%。(3)VMD - IPSO - BiLSTM模型在各城市测试期的NSE超过0.88,表明预测精度较高,为优化降雨预报提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f733/11091129/95ebd8ab956e/41598_2024_61855_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验