Guo Wei, Pan Meiling, Xie Qianjie, Fan Hua, Luo Laihao, Jing Qun, Shen Yehua, Yan Yan, Liu Mingkai, Wang Zheng
College of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China.
School of Physical Science and Technology, Xinjiang University, Urumqi, China.
Nat Commun. 2025 Mar 25;16(1):2920. doi: 10.1038/s41467-025-58297-1.
Renewable biomass serves as a cost-effective source of carbon matrix to carry single-atom catalysts (SACs). However, the natural abundant oxygen in these materials hinders the sufficient dispersion of element with high oxygen affinity such iron (Fe). The lowered-density and oxidized SACs greatly limits their catalytic applications. Here we develop a facile continuous activation (CA) approach for synthesizing robust biomass-derived Fe-SACs. Comparing to the traditional pyrolysis method, the CA approach significantly increases the Fe loading density from 1.13 atoms nm to 4.70 atoms nm. Simultaneously, the CA approach induces a distinct coordination tuning from dominated Fe-O to Fe-N moieties. We observe a pH-universal oxygen reduction reaction (ORR) performance over the CA-derived Fe-SACs with a half-wave potential of 0.93 V and 0.78 V vs. RHE in alkaline and acidic electrolyte, respectively. Density functional theory calculations further reveal that the increased Fe-N coordination effectively reduces the energy barriers for the ORR, thus enhancing the catalytic activity. The Fe-SACs-based zinc-air batteries show a specific capacity of 792 mA·h·g and ultra-long life span of over 650 h at 5 mA cm.
可再生生物质是负载单原子催化剂(SACs)的具有成本效益的碳基质来源。然而,这些材料中天然丰富的氧阻碍了具有高氧亲和力的元素如铁(Fe)的充分分散。密度降低和被氧化的SACs极大地限制了它们的催化应用。在此,我们开发了一种简便的连续活化(CA)方法来合成坚固的生物质衍生Fe-SACs。与传统的热解方法相比,CA方法将Fe负载密度从1.13原子·nm显著提高到4.70原子·nm。同时,CA方法诱导了从以Fe-O为主到Fe-N部分的明显配位调整。我们观察到CA衍生的Fe-SACs具有pH通用的氧还原反应(ORR)性能,在碱性和酸性电解质中相对于可逆氢电极(RHE)的半波电位分别为0.93 V和0.78 V。密度泛函理论计算进一步表明,增加的Fe-N配位有效地降低了ORR的能垒,从而提高了催化活性。基于Fe-SACs的锌空气电池在5 mA cm下显示出792 mA·h·g的比容量和超过650 h的超长寿命。