Suppr超能文献

可处理的非线性记忆函数作为一种捕捉和解释动力学行为的工具。

Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors.

作者信息

Herrera-Delgado Edgar, Briscoe James, Sollich Peter

机构信息

The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, United Kingdom and Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom.

The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, United Kingdom.

出版信息

Phys Rev Res. 2020 Oct 13;2(4):043069. doi: 10.1103/PhysRevResearch.2.043069.

Abstract

Mathematical approaches from dynamical systems theory are used in a range of fields. This includes biology where they are used to describe processes such as protein-protein interaction and gene regulatory networks. As such networks increase in size and complexity, detailed dynamical models become cumbersome, making them difficult to explore and decipher. This necessitates the application of simplifying and coarse graining techniques to derive explanatory insight. Here we demonstrate that Zwanzig-Mori projection methods can be used to arbitrarily reduce the dimensionality of dynamical networks while retaining their dynamical properties. We show that a systematic expansion around the quasi-steady-state approximation allows an explicit solution for memory functions without prior knowledge of the dynamics. The approach not only preserves the same steady states but also replicates the transients of the original system. The method correctly predicts the dynamics of multistable systems as well as networks producing sustained and damped oscillations. Applying the approach to a gene regulatory network from the vertebrate neural tube, a well-characterized developmental transcriptional network, identifies features of the regulatory network responsible for its characteristic transient behavior. Taken together, our analysis shows that this method is broadly applicable to multistable dynamical systems and offers a powerful and efficient approach for understanding their behavior.

摘要

来自动力系统理论的数学方法在一系列领域中都有应用。这包括生物学领域,在该领域中这些方法被用于描述诸如蛋白质 - 蛋白质相互作用和基因调控网络等过程。随着此类网络规模和复杂性的增加,详细的动力学模型变得繁琐,难以进行探索和解译。这就需要应用简化和粗粒化技术来获得解释性的见解。在此我们证明,Zwanzig - Mori投影方法可用于在保留其动力学性质的同时任意降低动力学网络的维度。我们表明,围绕准稳态近似进行系统展开可以在无需事先了解动力学的情况下明确求解记忆函数。该方法不仅保留了相同的稳态,还复制了原始系统的瞬态。该方法能够正确预测多稳态系统以及产生持续和衰减振荡的网络的动力学。将该方法应用于脊椎动物神经管的基因调控网络(一个特征明确的发育转录网络),可识别出负责其特征性瞬态行为的调控网络特征。综上所述,我们的分析表明该方法广泛适用于多稳态动力系统,并为理解其行为提供了一种强大而有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a8/7614247/e78cf1185bc9/EMS170583-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验