Ayaz Cihan, Scalfi Laura, Dalton Benjamin A, Netz Roland R
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Phys Rev E. 2022 May;105(5-1):054138. doi: 10.1103/PhysRevE.105.054138.
We introduce a hybrid projection scheme that combines linear Mori projection and conditional Zwanzig projection techniques and use it to derive a generalized Langevin equation (GLE) for a general interacting many-body system. The resulting GLE includes (i) explicitly the potential of mean force (PMF) that describes the equilibrium distribution of the system in the chosen space of reaction coordinates, (ii) a random force term that explicitly depends on the initial state of the system, and (iii) a memory friction contribution that splits into two parts: a part that is linear in the past reaction-coordinate velocity and a part that is in general nonlinear in the past reaction coordinates but does not depend on velocities. Our hybrid scheme thus combines all desirable properties of the Zwanzig and Mori projection schemes. The nonlinear memory friction contribution is shown to be related to correlations between the reaction-coordinate velocity and the random force. We present a numerical method to compute all parameters of our GLE, in particular the nonlinear memory friction function and the random force distribution, from a trajectory in reaction coordinate space. We apply our method on the dihedral-angle dynamics of a butane molecule in water obtained from atomistic molecular dynamics simulations. For this example, we demonstrate that nonlinear memory friction is present and that the random force exhibits significant non-Gaussian corrections. We also present the derivation of the GLE for multidimensional reaction coordinates that are general functions of all positions in the phase-space of the underlying many-body system; this corresponds to a systematic coarse-graining procedure that preserves not only the correct equilibrium behavior but also the correct dynamics of the coarse-grained system.
我们引入了一种混合投影方案,该方案结合了线性森投影和条件茨万齐格投影技术,并使用它来推导一般相互作用多体系统的广义朗之万方程(GLE)。所得的GLE包括:(i)明确包含描述系统在所选反应坐标空间中平衡分布的平均力势(PMF);(ii)一个明确依赖于系统初始状态的随机力项;以及(iii)一个记忆摩擦贡献,它分为两部分:一部分与过去的反应坐标速度呈线性关系,另一部分通常与过去的反应坐标呈非线性关系,但不依赖于速度。因此,我们的混合方案结合了茨万齐格投影方案和森投影方案的所有理想特性。结果表明,非线性记忆摩擦贡献与反应坐标速度和随机力之间的相关性有关。我们提出了一种数值方法,用于从反应坐标空间中的轨迹计算我们的GLE的所有参数,特别是非线性记忆摩擦函数和随机力分布。我们将我们的方法应用于从原子分子动力学模拟获得的水中丁烷分子的二面角动力学。对于这个例子,我们证明了存在非线性记忆摩擦,并且随机力表现出显著的非高斯修正。我们还给出了多维反应坐标的GLE的推导,这些坐标是基础多体系统相空间中所有位置的一般函数;这对应于一种系统的粗粒化过程,该过程不仅保留了正确的平衡行为,还保留了粗粒化系统的正确动力学。