Suppr超能文献

尼日利亚奥贡州盘尾丝虫病的地理空间分布和预测建模。

Geospatial distribution and predictive modeling of onchocerciasis in Ogun State, Nigeria.

机构信息

Faculty of Basic and Applied Sciences, Department of Zoology, Osun State University, Osogbo, Nigeria.

Department of Public Health and Epidemiology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria.

出版信息

PLoS One. 2023 Mar 1;18(3):e0281624. doi: 10.1371/journal.pone.0281624. eCollection 2023.

Abstract

Onchocerciasis caused by infection with Onchocerca volvulus is a disease of public health importance and is highly associated with disability. As Nigeria is aiming at eliminating onchocerciasis by 2030, there is a need to develop newer tools to map disease prevalence and identify environmental factors driving disease prevalence, even in places that have not been previously targeted for preventive chemotherapy. This study produced predictive risk-maps of onchocerciasis in Ogun State. Georeferenced onchocerciasis infection data obtained from a cross-sectional survey at 32 locations between March and July 2015 together with remotely-sensed environmental data were analyzed using Ecological Niche Models (ENM). A total of 107 field occurrence points for O. volvulus infection were recorded. A total of 43 positive occurrence points were used for modelling. ENMs were used to estimate the current geographic distribution of O. volvulus in Ogun State. Maximum Entropy distribution modeling (MaxEnt) was used for predicting the potential suitable habitats, using a portion of the occurrence records. A total of 19 environmental variables were used to model the potential geographical distribution area under current climatic conditions. Empirical prevalence of 9.3% was recorded in this study. The geospatial distribution of infection revealed that all communities in Odeda Local Government Area (a peri-urban LGA) showed remarkably high prevalence compared with other LGAs. The predicted high-risk areas (probability > 0.8) of O. volvulus infection were all parts of Odeda, Abeokuta South, and Abeokuta North, southern part of Imeko-Afon, a large part of Yewa North, some parts of Ewekoro and Obafemi-Owode LGAs. The estimated prevalence for these regions were >60% (between 61% and 100%). As predicted, O. volvulus occurrence showed a positive association with variables reflecting precipitation in Ogun State. Our predictive risk-maps has provided useful information for the elimination of onchocerciais, by identifying priority areas for delivery of intervention in Ogun State, Nigeria.

摘要

奥氏旋毛线虫引起的盘尾丝虫病是一种具有公共卫生重要性的疾病,与残疾高度相关。由于尼日利亚旨在到 2030 年消除盘尾丝虫病,因此需要开发新的工具来绘制疾病流行情况并确定驱动疾病流行的环境因素,即使在以前未针对预防性化疗进行靶向的地方也是如此。本研究制作了奥贡州盘尾丝虫病的预测风险图。对 2015 年 3 月至 7 月在 32 个地点进行的横断面调查中获得的与地理坐标关联的盘尾丝虫感染数据以及遥感环境数据进行了分析,采用生态位模型 (ENM) 进行分析。共记录了奥氏旋毛线虫感染的 107 个实地发生点。共使用了 43 个阳性发生点进行建模。ENM 用于估计奥贡州奥氏旋毛线虫的当前地理分布。最大熵分布建模 (MaxEnt) 用于预测潜在的适宜栖息地,使用了部分发生记录。共使用了 19 个环境变量来模拟当前气候条件下的潜在地理分布区域。本研究记录了 9.3%的经验流行率。感染的地理空间分布表明,奥德达地方政府区(一个城郊 LGA)的所有社区与其他 LGA 相比,流行率显著较高。奥氏旋毛线虫感染的高风险区域(概率>0.8)预测都在奥德达、阿贝奥库塔南部和阿贝奥库塔北部、伊梅科-阿丰南部、耶瓦北部大部分地区、埃克沃罗和奥巴费米-奥沃德部分地区。这些地区的估计流行率>60%(61%-100%)。正如预测的那样,奥氏旋毛线虫的发生与反映奥贡州降水的变量呈正相关。我们的预测风险图为尼日利亚奥贡州消除盘尾丝虫病提供了有用的信息,确定了优先开展干预措施的重点地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c30/9977021/813217e1a66a/pone.0281624.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验