文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测物种(双翅目:蚊科)潜在地理分布的生态位建模:以尼日利亚埃努古州为例

Ecological niche modeling for predicting the potential geographical distribution of species (Diptera: Culicidae): A case study of Enugu State, Nigeria.

作者信息

Omar K, Thabet H S, TagEldin R A, Asadu C C, Chukwuekezie O C, Ochu J C, Dogunro F A, Nwangwu U C, Onwude O C, Ezihe E K, Anioke C C, Arimoto H

机构信息

U.S. Naval Medical Research Unit - No.3, Cairo detachment, Egypt.

National Arbovirus and Vector Research Centre, Federal Ministry of Health, Nigeria.

出版信息

Parasite Epidemiol Control. 2021 Sep 15;15:e00225. doi: 10.1016/j.parepi.2021.e00225. eCollection 2021 Nov.


DOI:10.1016/j.parepi.2021.e00225
PMID:34646952
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8498000/
Abstract

Arbovirus transmission by mosquitoes has long been a significant problem in Africa. In West Africa, vector management faces significant challenges; lack of recent distributional data and potential distributional modeling hinder effective vector control and pose serious public health issues. In this study, larval and adult mosquitoes were collected from four study sites in Enugu State, Nigeria every other month between November 2017 and September 2018. A total number of 2997 mosquitoes were collected and identified, and 59 positive field occurrence points for both adult and larvae were recorded. A total of 18 positive occurrence points were used for modeling. Ecological Niche Models (ENMs) were used to estimate the current geographic distribution of species () in Enugu State, south-east Nigeria, and mosquito presence was used as a proxy for predicting risk of disease transmission. Maximum Entropy distribution modeling or "MaxEnt" was used for predicting the potential suitable habitats, using a portion of the occurrence records. A total of 23 environmental variables (19 bioclimatic and four topographic) were used to model the potential geographical distribution area under current climatic conditions. The most suitable habitat for spp. was predicted in the northern, central, and southeastern parts of Enugu State with some extensions in Anambra, Delta, and Edo States in the west, and Ebonyi State in the east. Seasonal temperature, precipitation of the wettest month, mean monthly temperature range, elevation, and precipitation of the driest months were the highest estimated main variable contributions associated with the distribution of spp. We found that spp. prefer to be situated in environmental conditions where precipitation of wettest month ranged from 265 to 330 mm, precipitation of driest quarter ranged from 25 to 75 mm while precipitation of wettest quarter ranged from 650 to 950 mm. mosquitoes, such as and pose a significant threat to human health, hence, the results of this study will help decision makers to monitor the distribution of these species and establish a management plan for future national mosquito surveillance and control programs in Nigeria.

摘要

蚊虫传播虫媒病毒长期以来一直是非洲的一个重大问题。在西非,病媒管理面临重大挑战;缺乏最新的分布数据以及潜在分布模型阻碍了有效的病媒控制,并引发了严重的公共卫生问题。在本研究中,于2017年11月至2018年9月期间每隔一个月从尼日利亚埃努古州的四个研究地点采集幼虫和成虫蚊子。共采集并鉴定了2997只蚊子,记录到59个成虫和幼虫的阳性野外出现点。共18个阳性出现点用于建模。生态位模型(ENMs)用于估计尼日利亚东南部埃努古州物种()的当前地理分布,蚊虫的存在被用作预测疾病传播风险的指标。使用最大熵分布建模或“MaxEnt”,利用部分出现记录来预测潜在适宜栖息地。共使用23个环境变量(19个生物气候变量和4个地形变量)对当前气候条件下的潜在地理分布区域进行建模。预测在埃努古州的北部、中部和东南部为物种提供的最适宜栖息地,在西部的阿南布拉州、三角州和江户州以及东部的埃邦伊州有一定延伸。季节性温度、最湿月降水量、月平均温度范围、海拔以及最干月降水量是与物种分布相关的估计主要变量贡献最高的因素。我们发现物种倾向于处于最湿月降水量在265至330毫米、最干季度降水量在25至75毫米而最湿季度降水量在650至950毫米的环境条件下。诸如和等蚊虫对人类健康构成重大威胁,因此,本研究结果将有助于决策者监测这些物种的分布,并为尼日利亚未来的国家蚊虫监测和控制计划制定管理方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/491dd2821129/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/b98042892906/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/54fff4c4cb76/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/3042d5433b5d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/c7f826c58b86/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/89fbd635103e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/8ed9372b6ab9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/bcee3586e87a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/491dd2821129/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/b98042892906/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/54fff4c4cb76/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/3042d5433b5d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/c7f826c58b86/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/89fbd635103e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/8ed9372b6ab9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/bcee3586e87a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c51/8498000/491dd2821129/gr8.jpg

相似文献

[1]
Ecological niche modeling for predicting the potential geographical distribution of species (Diptera: Culicidae): A case study of Enugu State, Nigeria.

Parasite Epidemiol Control. 2021-9-15

[2]
Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate.

PLoS One. 2018-12-31

[3]
Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control.

PLoS Negl Trop Dis. 2019-4-17

[4]
Environmental suitability for and and the spatial distribution of major arboviral infections in Mexico.

Parasite Epidemiol Control. 2019-8-12

[5]
Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China.

Sci Total Environ. 2019-2-1

[6]
Modeling and mapping the habitat suitability and the potential distribution of Arboviruses vectors in Morocco.

Parasite. 2021

[7]
Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany.

Parasitol Res. 2016-3

[8]
Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States.

J Med Entomol. 2017-11-7

[9]
Spatial distribution and ecological niche modeling of geographical spread of Anopheles gambiae complex in Nigeria using real time data.

Sci Rep. 2023-8-22

[10]
Estimations of Fine-Scale Species Distributions of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Eastern Florida.

J Med Entomol. 2021-3-12

引用本文的文献

[1]
Analysis of the Current Risk of Transmission in Greece and its Projection.

Transbound Emerg Dis. 2025-7-13

[2]
Modelling species distribution of Anopheles gambiae s.l. in Osun state using random forest modeling approach.

Sci Rep. 2025-5-13

[3]
Geospatial modeling of geographical spread of Aedes species, in relation to climatic and topographical factors in Lagos State, Nigeria.

PLoS Negl Trop Dis. 2025-2-6

[4]
Quantitative modelling for dengue and Aedes mosquitoes in Africa: A systematic review of current approaches and future directions for Early Warning System development.

PLoS Negl Trop Dis. 2024-11-26

[5]
Analysis of the current risk of transmission for domestic dogs in Spain and Portugal and its future projection in climate change scenarios.

Front Vet Sci. 2024-5-2

[6]
Prediction and validation of potential transmission risk of spp. infection in Serbia and its projection to 2080.

Front Vet Sci. 2024-4-3

[7]
Whole genome sequencing unravels cryptic circulation of divergent dengue virus lineages in the rainforest region of Nigeria.

Emerg Microbes Infect. 2024-12

[8]
Assessment Heartworm Disease in the Canary Islands (Spain): Risk of Transmission in a Hyperendemic Area by Ecological Niche Modeling and Its Future Projection.

Animals (Basel). 2023-10-18

[9]
Trends in mosquito species distribution modeling: insights for vector surveillance and disease control.

Parasit Vectors. 2023-8-28

[10]
Spatial distribution and ecological niche modeling of geographical spread of Anopheles gambiae complex in Nigeria using real time data.

Sci Rep. 2023-8-22

本文引用的文献

[1]
Seasonality of agricultural exposure as an important predictor of seasonal yellow fever spillover in Brazil.

Nat Commun. 2021-6-15

[2]
Ecological niche modeling of Aedes mosquito vectors of chikungunya virus in southeastern Senegal.

Parasit Vectors. 2018-4-19

[3]
(Bigot) mosquito: An emerging threat to public health.

J Vector Borne Dis. 2017

[4]
Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats.

Int J Environ Res Public Health. 2018-1-28

[5]
Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors.

PLoS One. 2018-1-16

[6]
Epidemic arboviral diseases: priorities for research and public health.

Lancet Infect Dis. 2016-12-21

[7]
Declining Prevalence of Disease Vectors Under Climate Change.

Sci Rep. 2016-12-16

[8]
Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan.

Trop Med Int Health. 2016-3

[9]
The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus.

Elife. 2015-6-30

[10]
Zika virus emergence in mosquitoes in southeastern Senegal, 2011.

PLoS One. 2014-10-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索