Suppr超能文献

AtomVision:用于原子图像的机器视觉库。

AtomVision: A Machine Vision Library for Atomistic Images.

作者信息

Choudhary Kamal, Gurunathan Ramya, DeCost Brian, Biacchi Adam

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.

出版信息

J Chem Inf Model. 2023 Mar 27;63(6):1708-1722. doi: 10.1021/acs.jcim.2c01533. Epub 2023 Mar 1.

Abstract

Computer vision techniques have immense potential for materials design applications. In this work, we introduce an integrated and general-purpose AtomVision library that can be used to generate and curate microscopy image (such as scanning tunneling microscopy and scanning transmission electron microscopy) data sets and apply a variety of machine learning techniques. To demonstrate the applicability of this library, we (1) establish an atomistic image data set of about 10 000 materials with large structural and chemical diversity, (2) develop and compare convolutional and atomistic line graph neural network models to classify the Bravais lattices, (3) demonstrate the application of fully convolutional neural networks using U-Net architecture to pixelwise classify atom versus background, (4) use a generative adversarial network for super resolution, (5) curate an image data set on the basis of natural language processing using an open-access arXiv data set, and (6) integrate the computational framework with experimental microscopy images for Rh, FeO, and SnS systems. The AtomVision library is available at https://github.com/usnistgov/atomvision.

摘要

计算机视觉技术在材料设计应用中具有巨大潜力。在这项工作中,我们引入了一个集成的通用原子视觉库,可用于生成和管理显微镜图像(如扫描隧道显微镜和扫描透射电子显微镜)数据集,并应用各种机器学习技术。为了证明该库的适用性,我们:(1) 建立了一个包含约10000种具有大结构和化学多样性材料的原子图像数据集;(2) 开发并比较卷积和原子线图神经网络模型以对布拉菲晶格进行分类;(3) 展示使用U-Net架构的全卷积神经网络对原子与背景进行逐像素分类的应用;(4) 使用生成对抗网络进行超分辨率处理;(5) 使用开放获取的arXiv数据集基于自然语言处理来管理图像数据集;(6) 将计算框架与Rh、FeO和SnS系统的实验显微镜图像集成。原子视觉库可在https://github.com/usnistgov/atomvision获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验