Suppr超能文献

在 COVID-19 时代戴口罩说话:声学和感知参数的多类机器学习分类。

Speaking with mask in the COVID-19 era: Multiclass machine learning classification of acoustic and perceptual parameters.

机构信息

Department of Information Engineering, Università degli Studi di Firenze, Firenze, Italy.

Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.

出版信息

J Acoust Soc Am. 2023 Feb;153(2):1204. doi: 10.1121/10.0017244.

Abstract

The intensive use of personal protective equipment often requires increasing voice intensity, with possible development of voice disorders. This paper exploits machine learning approaches to investigate the impact of different types of masks on sustained vowels /a/, /i/, and /u/ and the sequence /a'jw/ inside a standardized sentence. Both objective acoustical parameters and subjective ratings were used for statistical analysis, multiple comparisons, and in multivariate machine learning classification experiments. Significant differences were found between mask+shield configuration and no-mask and between mask and mask+shield conditions. Power spectral density decreases with statistical significance above 1.5 kHz when wearing masks. Subjective ratings confirmed increasing discomfort from no-mask condition to protective masks and shield. Machine learning techniques proved that masks alter voice production: in a multiclass experiment, random forest (RF) models were able to distinguish amongst seven masks conditions with up to 94% validation accuracy, separating masked from unmasked conditions with up to 100% validation accuracy and detecting the shield presence with up to 86% validation accuracy. Moreover, an RF classifier allowed distinguishing male from female subject in masked conditions with 100% validation accuracy. Combining acoustic and perceptual analysis represents a robust approach to characterize masks configurations and quantify the corresponding level of discomfort.

摘要

个人防护设备的密集使用通常需要提高声音强度,这可能导致嗓音障碍。本文利用机器学习方法研究了不同类型的口罩对持续元音 /a/、/i/、/u/ 和标准句子中的 /a'jw/ 的影响。客观声学参数和主观评分都用于统计分析、多重比较和多元机器学习分类实验。在口罩+面罩配置和无口罩以及口罩和口罩+面罩条件之间发现了显著差异。佩戴口罩时,在 1.5kHz 以上,功率谱密度会显著降低。主观评分证实,从无口罩状态到防护口罩和面罩,不适感会增加。机器学习技术证明口罩会改变发声:在多类实验中,随机森林 (RF) 模型能够以高达 94%的验证准确率区分七种口罩状态,以高达 100%的验证准确率区分有口罩和无口罩状态,并以高达 86%的验证准确率检测到面罩的存在。此外,RF 分类器能够以 100%的验证准确率区分有口罩的男性和女性被试。结合声学和感知分析是一种强大的方法,可以描述口罩配置并量化相应的不适程度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验