Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 41345, Sweden.
Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France.
Genome Res. 2023 Mar;33(3):299-313. doi: 10.1101/gr.276407.121. Epub 2023 Mar 1.
Insights into host-virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. -Methyladenosine modification (mA), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including mA readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of mA in cellular RNAs, whereas mA is detected abundantly in viral RNA. METTL3, the mA methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of mA than did the B.1 and B.1.1.7 variants. We also observed a loss of mA upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that mA loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with mA modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of mA on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an mA-dependent manner.
深入了解 SARS-CoV-2 感染过程中的宿主-病毒相互作用,有助于理解 COVID-19 的发病机制,并可能有助于指导新型抗病毒治疗药物的设计。- 甲基腺苷修饰 (mA) 是最丰富的细胞 RNA 修饰之一,可调节应激反应过程中 RNA 代谢的关键过程。感染不同 SARS-CoV-2 变体后观察到的基因表达谱显示,与 RNA 分解代谢相关的基因表达发生变化,包括 mA 读取器和擦除器。我们发现,SARS-CoV-2 变体感染会导致细胞 RNA 中的 mA 丢失,而 mA 在病毒 RNA 中大量存在。mA 甲基转移酶 METTL3 在感染后表现出异常的细胞质定位。与 B.1 和 B.1.1.7 变体相比,B.1.351 变体对 METTL3 定位和 mA 丢失的影响较小。我们还观察到 SARS-CoV-2 在人呼吸道上皮细胞的气/液界面培养物中感染时 mA 的丢失,证实 mA 的丢失是 SARS-CoV-2 感染细胞的特征。此外,感染 SARS-CoV-2 后,带有 mA 修饰的转录本优先下调。抑制输出蛋白 XPO1 可导致 METTL3 定位恢复、细胞 RNA 上的 mA 恢复以及 mRNA 表达增加。被 SARS-CoV-2 感染破坏的应激颗粒形成通过 XPO1 抑制得到恢复,并且体外病毒感染减少。总之,我们的研究阐明了 SARS-CoV-2 如何以 mA 依赖的方式抑制应激反应并扰乱细胞基因表达。