Suppr超能文献

脑连接组中的社区检测与混合量子计算。

Community detection in brain connectomes with hybrid quantum computing.

机构信息

University of Warsaw, Institute of Mathematics, Warsaw, 02-097, Poland.

Sano Center for Computational Personalised Medicine, Computer Vision Group, Krakow, 30-054, Poland.

出版信息

Sci Rep. 2023 Mar 1;13(1):3446. doi: 10.1038/s41598-023-30579-y.

Abstract

Recent advancements in network neuroscience are pointing in the direction of considering the brain as a small-world system with an efficient integration-segregation balance that facilitates different cognitive tasks and functions. In this context, community detection is a pivotal issue in computational neuroscience. In this paper we explored community detection within brain connectomes using the power of quantum annealers, and in particular the Leap's Hybrid Solver in D-Wave. By reframing the modularity optimization problem into a Discrete Quadratic Model, we show that quantum annealers achieved higher modularity indices compared to the Louvain Community Detection Algorithm without the need to overcomplicate the mathematical formulation. We also found that the number of communities detected in brain connectomes slightly differed while still being biologically interpretable. These promising preliminary results, together with recent findings, strengthen the claim that quantum optimization methods might be a suitable alternative against classical approaches when dealing with community assignment in networks.

摘要

网络神经科学的最新进展表明,人们开始将大脑视为具有高效整合-分离平衡的小世界系统,这种平衡有助于实现不同的认知任务和功能。在这种背景下,社区检测是计算神经科学中的一个关键问题。在本文中,我们使用量子退火的强大功能,特别是 D-Wave 的 Leap 的混合求解器,探索了脑连接组中的社区检测。通过将模块化优化问题重新表述为离散二次模型,我们表明量子退火在不需要使数学公式复杂化的情况下,与 Louvain 社区检测算法相比,实现了更高的模块化指数。我们还发现,脑连接组中检测到的社区数量略有不同,但仍然具有生物学可解释性。这些有希望的初步结果,结合最近的发现,进一步证实了量子优化方法在处理网络中的社区分配时可能是经典方法的一个合适替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43c4/9977923/dee38f3ceef6/41598_2023_30579_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验