Jinzhou Medical University, Jinzhou, Liaoning Province, China.
Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Address: No. 158 Shangtang Road, Hanghzou City, 310014, Zhejiang Province, China.
J Nucl Cardiol. 2023 Oct;30(5):1838-1850. doi: 10.1007/s12350-023-03221-7. Epub 2023 Mar 1.
This study aimed to predict myocardial ischemia (MIS) by constructing models with imaging features, CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics based on coronary computed tomography angiography (CCTA).
This study included 96 patients who underwent CCTA and single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI). According to SPECT-MPI results, there were 72 vessels with MIS in corresponding supply area and 105 vessels with no-MIS. The conventional model [lesion length (LL), MDS (maximum stenosis diameter × 100% / reference vessel diameter), MAS (maximum stenosis area × 100% / reference vessel area) and CT value], radiomics model (radiomics features), and multi-faceted model (all features) were constructed using support vector machine. Conventional and radiomics models showed similar predictive efficacy [AUC: 0.76, CI 0.62-0.90 vs. 0.74, CI 0.61-0.88; p > 0.05]. Adding pFAI to the conventional model showed better predictive efficacy than adding CT-FFR (AUC: 0.88, CI 0.79-0.97 vs. 0.80, CI 0.68-0.92; p < 0.05). Compared with conventional and radiomics model, the multi-faceted model showed the highest predictive efficacy (AUC: 0.92, CI 0.82-0.98, p < 0.05).
pFAI is more effective for predicting MIS than CT-FFR. A multi-faceted model combining imaging features, CT-FFR, pFAI, and radiomics is a potential diagnostic tool for MIS.
本研究旨在通过构建基于冠状动脉 CT 血管造影(CCTA)的影像特征、CT 血流储备分数(CT-FFR)、冠状脂肪衰减指数(pFAI)和放射组学模型来预测心肌缺血(MIS)。
本研究纳入了 96 例接受 CCTA 和单光子发射计算机断层扫描心肌灌注成像(SPECT-MPI)的患者。根据 SPECT-MPI 结果,在相应供血区有 72 个血管存在 MIS,105 个血管无 MIS。构建了基于支持向量机的传统模型[病变长度(LL)、MDS(最大狭窄直径×100%/参考血管直径)、MAS(最大狭窄面积×100%/参考血管面积)和 CT 值]、放射组学模型(放射组学特征)和多方面模型(所有特征)。传统模型和放射组学模型具有相似的预测效能[AUC:0.76,CI 0.62-0.90 与 0.74,CI 0.61-0.88;p>0.05]。与传统模型相比,添加 pFAI 后预测效能优于添加 CT-FFR(AUC:0.88,CI 0.79-0.97 与 0.80,CI 0.68-0.92;p<0.05)。与传统模型和放射组学模型相比,多方面模型具有最高的预测效能(AUC:0.92,CI 0.82-0.98,p<0.05)。
pFAI 比 CT-FFR 更有利于预测 MIS。综合影像特征、CT-FFR、pFAI 和放射组学的多方面模型可能是 MIS 的一种潜在诊断工具。