Suppr超能文献

冠状动脉 CT 血管造影成像特征联合 CT 血流储备分数、冠状动脉脂肪衰减指数和放射组学预测心肌缺血。

Coronary computed tomography angiography imaging features combined with computed tomography-fractional flow reserve, pericoronary fat attenuation index, and radiomics for the prediction of myocardial ischemia.

机构信息

Jinzhou Medical University, Jinzhou, Liaoning Province, China.

Heart Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Address: No. 158 Shangtang Road, Hanghzou City, 310014, Zhejiang Province, China.

出版信息

J Nucl Cardiol. 2023 Oct;30(5):1838-1850. doi: 10.1007/s12350-023-03221-7. Epub 2023 Mar 1.

Abstract

BACKGROUND

This study aimed to predict myocardial ischemia (MIS) by constructing models with imaging features, CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics based on coronary computed tomography angiography (CCTA).

METHODS AND RESULTS

This study included 96 patients who underwent CCTA and single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI). According to SPECT-MPI results, there were 72 vessels with MIS in corresponding supply area and 105 vessels with no-MIS. The conventional model [lesion length (LL), MDS (maximum stenosis diameter × 100% / reference vessel diameter), MAS (maximum stenosis area × 100% / reference vessel area) and CT value], radiomics model (radiomics features), and multi-faceted model (all features) were constructed using support vector machine. Conventional and radiomics models showed similar predictive efficacy [AUC: 0.76, CI 0.62-0.90 vs. 0.74, CI 0.61-0.88; p > 0.05]. Adding pFAI to the conventional model showed better predictive efficacy than adding CT-FFR (AUC: 0.88, CI 0.79-0.97 vs. 0.80, CI 0.68-0.92; p < 0.05). Compared with conventional and radiomics model, the multi-faceted model showed the highest predictive efficacy (AUC: 0.92, CI 0.82-0.98, p < 0.05).

CONCLUSION

pFAI is more effective for predicting MIS than CT-FFR. A multi-faceted model combining imaging features, CT-FFR, pFAI, and radiomics is a potential diagnostic tool for MIS.

摘要

背景

本研究旨在通过构建基于冠状动脉 CT 血管造影(CCTA)的影像特征、CT 血流储备分数(CT-FFR)、冠状脂肪衰减指数(pFAI)和放射组学模型来预测心肌缺血(MIS)。

方法和结果

本研究纳入了 96 例接受 CCTA 和单光子发射计算机断层扫描心肌灌注成像(SPECT-MPI)的患者。根据 SPECT-MPI 结果,在相应供血区有 72 个血管存在 MIS,105 个血管无 MIS。构建了基于支持向量机的传统模型[病变长度(LL)、MDS(最大狭窄直径×100%/参考血管直径)、MAS(最大狭窄面积×100%/参考血管面积)和 CT 值]、放射组学模型(放射组学特征)和多方面模型(所有特征)。传统模型和放射组学模型具有相似的预测效能[AUC:0.76,CI 0.62-0.90 与 0.74,CI 0.61-0.88;p>0.05]。与传统模型相比,添加 pFAI 后预测效能优于添加 CT-FFR(AUC:0.88,CI 0.79-0.97 与 0.80,CI 0.68-0.92;p<0.05)。与传统模型和放射组学模型相比,多方面模型具有最高的预测效能(AUC:0.92,CI 0.82-0.98,p<0.05)。

结论

pFAI 比 CT-FFR 更有利于预测 MIS。综合影像特征、CT-FFR、pFAI 和放射组学的多方面模型可能是 MIS 的一种潜在诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验