Suppr超能文献

通过精确的噪声建模在结构光照明显微镜中接近最大分辨率。

Approaching maximum resolution in structured illumination microscopy via accurate noise modeling.

作者信息

Saurabh Ayush, Brown Peter T, Bryan Iv J Shepard, Fox Zachary R, Kruithoff Rory, Thompson Cristopher, Kural Comert, Shepherd Douglas P, Pressé Steve

机构信息

Center for Biological Physics, Arizona State University, Tempe, AZ USA.

Department of Physics, Arizona State University, Tempe, AZ USA.

出版信息

Npj Imaging. 2025;3(1):5. doi: 10.1038/s44303-024-00066-8. Epub 2025 Jan 31.

Abstract

Biological images captured by microscopes are characterized by heterogeneous signal-to-noise ratios (SNRs) due to spatially varying photon emission across the field of view convoluted with camera noise. State-of-the-art unsupervised structured illumination microscopy (SIM) reconstruction methods, commonly implemented in the Fourier domain, often do not accurately model this noise. Such methods therefore suffer from high-frequency artifacts, user-dependent choices of smoothness constraints making assumptions on biological features, and unphysical negative values in the recovered fluorescence intensity map. On the other hand, supervised algorithms rely on large datasets for training, and often require retraining for new sample structures. Consequently, achieving high contrast near the maximum theoretical resolution in an unsupervised, physically principled manner remains an open problem. Here, we propose Bayesian-SIM (B-SIM), a Bayesian framework to quantitatively reconstruct SIM data, rectifying these shortcomings by accurately incorporating known noise sources in the spatial domain. To accelerate the reconstruction process, we use the finite extent of the point-spread-function to devise a parallelized Monte Carlo strategy involving chunking and restitching of the inferred fluorescence intensity. We benchmark our framework on both simulated and experimental images, and demonstrate improved contrast permitting feature recovery at up to 25% shorter length scales over state-of-the-art methods at both high- and low SNR. B-SIM enables unsupervised, quantitative, physically accurate reconstruction without the need for labeled training data, democratizing high-quality SIM reconstruction and expands the capabilities of live-cell SIM to lower SNR, potentially revealing biological features in previously inaccessible regimes.

摘要

由于视场中光子发射的空间变化与相机噪声卷积,显微镜捕获的生物图像具有异质的信噪比(SNR)特征。当前最先进的无监督结构照明显微镜(SIM)重建方法通常在傅里叶域中实现,往往无法准确对这种噪声进行建模。因此,此类方法会出现高频伪影、依赖用户选择的平滑约束(对生物特征进行假设)以及恢复的荧光强度图中出现非物理的负值。另一方面,监督算法依赖大量数据集进行训练,并且通常需要针对新的样本结构重新训练。因此,以无监督、物理原理性的方式在接近最大理论分辨率时实现高对比度仍然是一个未解决的问题。在此,我们提出了贝叶斯 - SIM(B - SIM),这是一个用于定量重建SIM数据的贝叶斯框架,通过在空间域中准确纳入已知噪声源来纠正这些缺点。为了加速重建过程,我们利用点扩散函数的有限范围设计了一种并行蒙特卡罗策略,该策略涉及对推断的荧光强度进行分块和重新拼接。我们在模拟图像和实验图像上对我们的框架进行了基准测试,并证明在高SNR和低SNR情况下,与当前最先进的方法相比,改进后的对比度允许在短25%的长度尺度上恢复特征。B - SIM能够进行无监督、定量、物理准确的重建,无需标记的训练数据,使高质量的SIM重建得以普及,并将活细胞SIM的能力扩展到更低的SNR,有可能揭示以前无法进入的区域中的生物特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/062c/12091692/eb6a54acabe2/44303_2024_66_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验