Opt Express. 2023 Feb 27;31(5):8820-8843. doi: 10.1364/OE.483522.
In allusion to the privacy and security problems in 3D point cloud classification, a novel privacy protection method for 3D point cloud classification based on optical chaotic encryption scheme is proposed and implemented in this paper for the first time. The mutually coupled spin-polarized vertical-cavity surface-emitting lasers (MC-SPVCSELs) subject to double optical feedback (DOF) are studied to generate optical chaos for permutation and diffusion encryption process of 3D point cloud. The nonlinear dynamics and complexity results demonstrate that the MC-SPVCSELs with DOF have high chaotic complexity and can provide tremendously large key space. All the test-sets of ModelNet40 dataset containing 40 object categories are encrypted and decrypted by the proposed scheme, and then the classification results of 40 object categories for original, encrypted, and decrypted 3D point cloud are entirely enumerated through the PointNet++. Intriguingly, the class accuracies of the encrypted point cloud are nearly all equal to 0.0000% except for the plant class with 100.0000%, indicating the encrypted point cloud cannot be classified and identified. The decryption class accuracies are very close to the original class accuracies. Therefore, the classification results verify that the proposed privacy protection scheme is practically feasible and remarkably effective. Additionally, the encryption and decryption results show that the encrypted point cloud images are ambiguous and unrecognizable, while the decrypted point cloud images are identical to original images. Moreover, this paper improves the security analysis via analyzing 3D point cloud geometric features. Eventually, various security analysis results validate that the proposed privacy protection scheme has high security level and good privacy protection effect for 3D point cloud classification.
针对 3D 点云分类中的隐私和安全问题,本文首次提出并实现了一种基于光学混沌加密方案的 3D 点云分类隐私保护方法。研究了受双光反馈(DOF)影响的互耦自旋极化垂直腔面发射激光器(MC-SPVCSEL),以产生光学混沌,用于 3D 点云的排列和扩散加密过程。非线性动力学和复杂度结果表明,具有 DOF 的 MC-SPVCSEL 具有较高的混沌复杂度,可以提供巨大的密钥空间。使用所提出的方案对 ModelNet40 数据集的所有测试集进行加密和解密,然后通过 PointNet++ 完全枚举原始、加密和解密 3D 点云的 40 个对象类别的分类结果。有趣的是,加密点云的分类准确率几乎都等于 0.0000%,除了植物类别的准确率为 100.0000%,表明加密点云无法分类和识别。解密的分类准确率非常接近原始的分类准确率。因此,分类结果验证了所提出的隐私保护方案是切实可行且非常有效的。此外,加密和解密结果表明,加密后的点云图像模糊且不可识别,而解密后的点云图像与原始图像完全相同。此外,本文通过分析 3D 点云的几何特征来改进安全分析。最终,各种安全分析结果验证了所提出的隐私保护方案对 3D 点云分类具有较高的安全级别和良好的隐私保护效果。